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Abstract Psychiatric disorders are disturbances of cognitive and behavioral pro-
cesses mediated by the brain. Emerging evidence suggests that accurate biomarkers
for psychiatric disorders might benefit from incorporating information regarding
multiple brain regions and their interactions with one another, rather than consider-
ing local perturbations in brain structure and function alone. Recent advances in the
field of applied mathematics generally – and network science specifically – provide
a language to capture the complexity of interacting brain regions, and the application
of this language to fundamental questions in neuroscience forms the emerging
field of network neuroscience. This chapter provides an overview of the use and
utility of network neuroscience for building biomarkers in psychiatry. The chapter
begins with an overview of the theoretical frameworks and tools that encompass
network neuroscience before describing applications of network neuroscience to the
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study of schizophrenia and major depressive disorder. With reference to work on
genetic, molecular, and environmental correlates of network neuroscience
features, the promises and challenges of network neuroscience for providing tools
that aid in the diagnosis and the evaluation of treatment response in psychiatric
disorders are discussed.

Keywords Cognitive neuroscience · Depression · Graph theory · Network
neuroscience · Schizophrenia

1 Introduction

Psychiatric disorders are disturbances of cognitive and behavioral processes medi-
ated by the brain. Biomarkers for such disorders are objective indications of medical
state; their clinical utility lies in the potential to diagnose the disorder, to determine
its prognosis, and to predict and monitor a patient’s response to interventions (Bio-
markers Definitions Working Group 2001; Strimbu and Tavel 2010). Promising
approaches for the development of biomarkers include noninvasive neuroimaging
techniques, which have the capacity to capture the structure and function of the
brain in health and disease, without requiring the injection of contrast agents or
radiation exposure that may not be particularly well-tolerated by patient popul-
ations with mental illness. Historically, such approaches have focused on delineating
regions whose anatomy or physiology – as estimated from imaging measurements –
is altered in the disease. Yet, emerging evidence suggests that accurate biomarkers
might benefit from incorporating information from both imaging and non-imaging
modalities regarding not a single region but multiple regions and their interactions
with one another. The complexity of building such a biomarker can initially seem
quite daunting, largely because it requires the development of a language in which
to describe, quantify, and predict multi-region, multimodal, interacting networks.

Recent advances in the field of applied mathematics generally – and network
science specifically – have begun to provide just such a language. Their application
to fundamental questions in neuroscience forms the emerging field of network
neuroscience (Bassett and Sporns 2017). There are several features that render
network neuroscience approaches to neuroimaging data exquisitely suited to the
task of identifying mental illness (Fornito and Bullmore 2015). First, many psychi-
atric disorders have a genetic component, with heritability estimates as high as
80–90% observed for some disorders (e.g., schizophrenia and bipolar disorder;
Cannon et al. 1998; McGuffin et al. 2003). The association between genetic variants
and liability for mental illness is complex, arising from the combined effects of
many genes exerting small effects. As such, identifying genetic markers of risk is
difficult. Given that genes exert their effects on behavior via their influence on brain
regions and their complex patterns of interactions (Esslinger et al. 2009; Richiardi
et al. 2015), neuroimaging and network approaches to it provide a way forward
by allowing the examination of intermediate phenotypes through which genetic
risk for disorder is conferred (Meyer-Lindenberg and Weinberger 2006). Second,
healthy brain function depends on complex interactions among distributed brain
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regions (Sporns 2014), and psychiatric disorders are conceptualized as dysfunctions
in the dynamics across regions of the brain (Friston et al. 2016; Kana et al. 2011;
Woodward and Cascio 2015), rather than resulting from pathological perturbations
to individual regions (Fornito et al. 2015). Methodological approaches such as
network neuroscience, which are capable of capturing aberrant connectivity across
regions of the brain, provide a good match to theories of psychiatric disorders.

In this chapter, we provide an overview of the use and utility of network
neuroscience for building biomarkers in psychiatry. We begin by describing the
fundamentals of the field of network neuroscience. We then turn to a brief review
of the application of theoretical frameworks and mathematical tools from network
neuroscience to the study of schizophrenia and major depressive disorder. We
close by highlighting the value of the network neuroscience approach for under-
standing the biological underpinnings of psychiatric disorders more generally and
the construction of novel biomarkers specifically.

2 Network Neuroscience: A Primer

The emerging field of network neuroscience pursues new ways to map, record,
analyze, and model the elements and interactions of neurobiological systems
(Bassett and Sporns 2017). Many types of elements and their interactions are
examined in network neuroscience, reflecting the multi-scale nature of brain net-
works (Betzel and Bassett 2017). However, the tools available for observing the
brain and its constituent parts place limits on the scales that may be examined.
Imaging connectivity approaches often make use of magnetic resonance imaging
(MRI) data. From that data, one can construct a graph, which is a simple mathemat-
ical representation of a network composed of nodes representing system elements
and edges representing element relations or interactions. In imaging-derived net-
works, the nodes are typically parcels of gray matter voxels, ranging from single
voxels to the entire brain. Associations among nodes (edges) may be established
in a number of ways, which are typically categorized into structural or functional
connectivity approaches.

Structural connectivity approaches aim to understand the network architecture
of anatomically connected regions. There are two main approaches available for
constructing anatomical networks. Diffusion imaging tractography aims to recon-
struct the trajectory of axonal tracts using indices of the diffusion of water molecules
within neural fibers (Li et al. 2016; Mukherjee et al. 2008). In this approach, edges
reflect estimates of the probability with which a node is physically connected to
another via a white matter tract. Structural connectivity may also be established via
structural covariance analysis (Mechelli et al. 2005). In this approach, the covariance
between morphometric features (e.g., gray matter thickness) of each possible pair
of nodes in an anatomical network is estimated. In structural covariance networks,
edges represent shared morphometric features between nodes that are thought to
indicate physical connectivity of white matter tracts or functional connectivity
related to synchronous neural activation between regions (Alexander-Bloch et al.
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2013). Functional connectivity, in contrast, can be used to define network edges
based on statistical similarities in the time series of nodes at rest or during task
performance (Friston 2011). The edges in functional brain networks represent
communication or coordination between nodes. With appropriate analytic tech-
niques, causal relations between nodes can also be established. This form of con-
nectivity is typically referred to as effective connectivity (Stephan and Friston 2010).

Once nodes and edges have been estimated, structural and functional connectivity
networks are represented with an adjacency matrixA (see Fig. 1). For an unweighted
and undirected graph, the element Aij indicates the presence (1) or absence (0) of an
edge between node i and node j. For a weighted graph, the element Aij takes on a
value corresponding to the strength of the association between node i and node j. The
adjacency matrix for an undirected graph is symmetric, but in a directed graph, in
which the direction of the associations between node i and node j are specified, the
adjacency matrix may not be symmetric. In this case, Aij represents the edge weight
from node j to node i. This general graph construction can be used to represent a
time-invariant network, one that describes network organization across the entire
length of the scan, which is one typical object of study in network neuroscience. Yet,
more recently the time-varying nature of network organization has been increasingly
recognized (Calhoun et al. 2014), and tools with which to examine the changing
organization of the brain over time have emerged (Khambhati et al. 2017; Mucha
et al. 2010; Sizemore and Bassett 2017). In the case of time-varying networks,
multiple adjacency matrices may be constructed, by applying a sliding window
across smaller sections of imaging time series to extract a time-ordered graph
ensemble, providing the basis for analyses focused on capturing changes in network
organization across time (De Domenico 2017).

Following adjacency matrix construction, graph theory is applied to examine
the properties of brain networks (for a recent overview, see Fornito et al. 2016). The
application of graph theory to imaging data has led to the discovery of fundamental
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Fig. 1 Panels (a) through (c) provide an overview of the main steps involved in transforming
functional brain data into an adjacency matrix that encodes the associations among brain regions.
In panel (a), nodes are denoted by colored spheres. Spherical node parcellations are commonly used
(e.g., Power et al. 2011) although other options exist (e.g., areal pacellations; Gordon et al. 2014).
In panel (b), the mean time series of the BOLD response across the length of the scan is depicted for
each node of panel (a). Edges, or an estimation of the extent or strength of connectivity between
nodes, are created by estimating pair-wise correlations (or alternative statistical indices of associ-
ation, e.g., coherence; Bassett et al. 2011) among the time series of all node pairs. Nodes and edges
of the network are parsimoniously represented as an N-by-N adjacency matrix (where N is the
number of nodes) in panel (c); here color indicates edge strength
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organizational features of the brain. Structural and functional brain networks show a
small-world architecture, characterized by a combination of high clustering with
short characteristic path length (Watts and Strogatz 1998). The clustering coefficient
captures the extent to which neighboring nodes of a network tend to be densely
interconnected, or cluster, together. More formally, clustering in a binary graph
indicates the probability that nodes j and k, which are both connected to node i, are
also connected to each other (Chalancon et al. 2013). The shortest path length
between node i and node j describes the minimum number of edges that must be
traversed to travel from node i to node j in the graph. The characteristic path length of
a network is then defined as the average shortest path lengths across all possible pairs
of nodes in the network (Schreiber 2013). Based on the clustering coefficient and the
characteristic path length of a network, a network can be likened to a regular graph
(high local clustering and long path length), small-world graph (high local clustering
and short path length), or random graph (low local clustering and short path length).

Small-world architecture has been observed in human structural and functional
brain networks across a number of imaging modalities (for reviews, see Bassett
and Bullmore 2006, 2016), as well as across a number of methods for network
construction. A few pioneering early examples of such studies examined connectiv-
ity patterns of cortical thickness across the cerebral cortex using MRI (He et al.
2007), white matter connection probabilities between gray matter volumes using
diffusion-weighted imaging (Iturria-Medina et al. 2008), and functional connectivity
at rest (Achard et al. 2006; Salvador et al. 2005) as well as across task conditions
(Eguíluz et al. 2005). Small-world architecture, as evidenced by a combination of
high clustering and short path length, is thought to confer the capacity for specialized
processing in local regions as well as the ability to integrate processes across the
entire network, mapping onto the functional segregation and integration thought to
enable efficient cognition (Sporns et al. 2004).

In addition to exhibiting small-world characteristics, the brain exhibits commu-
nity structure, such that the large-scale network of the brain can be decomposed
into communities or modules. Modules are made up of nodes with dense connec-
tivity with each other and sparse connectivity with nodes in other modules. Both
structural and functional graphs of human brains exhibit modularity (Bassett et al.
2010; Chen et al. 2008; Meunier et al. 2009). Functional connectivity studies, for
example, have uncovered multiple functional modules at rest characterized by
relatively dense internode connectivity (Nelson et al. 2010; Power et al. 2011).
Named to reflect the functions typically associated with the constituent nodes,
these functional systems include salience, central executive, default mode, dorsal
attention, ventral attention, subcortical, cingulo-opercular, memory, visual, auditory,
motor, and cerebellar systems (although the systems are not consistently labeled).
Modular organization is thought to confer significant advantages to cognitive func-
tioning (Meunier et al. 2010; Sporns and Betzel 2016). From an evolutionary
perspective, modular organization allows adaptation of the system in response to
changing environments one module at a time, allowing for system change without
risking loss of function in already well-adapted modules (Simon 1962). In terms
of its relevance to cognition, modular organization contributes to efficient local
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information processing within functionally specialized modules as well as to the
rapid exchange of information between modules, allowing for a balance between
the functional segregation and integration important for cognition (Cohen and
D’Esposito 2016; He et al. 2009).

The availability of tools to examine time-varying aspects of network organization
has provided insight into changes in network organization over time and how
these changes relate to cognitive performance (for a recent review, see Cohen
2017). Brain network organization varies across task contexts but also within scan
sessions over the course of seconds (Calhoun et al. 2014; Medaglia et al. 2015a).
Dynamics in brain network organization at these timescales have implications for
cognition and behavior. In an auditory detection task, for example, reduced modu-
larity of the brain was observed prior to trials on which the target was missed relative
to trials on which the target was heard (Sadaghiani et al. 2015). In addition,
performance on a broad range of cognitive tasks was related to the flexibility with
which the salience system interacted with other modules over time at rest (Chen et al.
2016). The salience system is a module involved in facilitating access to executive
functions by signaling the engagement and disengagement of task-relevant and task-
irrelevant modules, respectively (Menon and Uddin 2010; Sridharan et al. 2008).
These and similar data further highlight the role of dynamic changes in brain
organization in cognition and behavior. Emerging frameworks linking dynamic
features of brain organization to both behavior and cognition emphasize that a
brain that can flexibly traverse many states of organization while also maintaining
a preference for a few states will support consistently accurate but also adaptable
behavior (Medaglia et al. 2015b).

3 Network Features as Biomarkers of Disease

Network neuroscience has revealed organizational principles of healthy brains (e.g.,
small-world architecture and modularity) that allow for efficient, flexible, and robust
information processing. The fundamental insights into brain network organization
conferred by network neuroscience hold great promise for providing biomarkers of
disease. Studies comparing the networks of individuals with psychiatric disorders to
those of healthy controls have observed disease-related deviations from the network
topology that defines healthy networks. In this section, we present an overview of
findings in schizophrenia and major depression disorder that have emerged from
graph theory applications to neuroimaging data.

Schizophrenia Schizophrenia is a mental disorder characterized by positive symp-
toms, including delusions and hallucinations, and negative symptoms, such as
flattened affect, as well as deficits in cognitive functions (Kahn et al. 2015). It
has an average lifetime prevalence of approximately 1% (Perälä et al. 2007) and
is associated with a shorter life-span relative to the general population (McGrath
et al. 2008). Brain network features may be particularly well suited as biomarkers
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of schizophrenia given current, and longstanding, dysconnectivity hypotheses of
schizophrenia (Andreasen et al. 1998; Friston and Frith 1995; Wernicke 1906;
Stephan et al. 2009). From the dysconnectivity perspective, it is an abnormal
functional integration between distinct brain regions, rather than simply focal brain
abnormalities, that are thought to underpin the disorder.

The advent of techniques capable of capturing connectivity disturbances provided
early evidence for dysconnectivity in schizophrenia (Volkow et al. 1988). Since
then, dysconnectivity in the organization of brain networks has been observed across
a range of scales in schizophrenia. Small-world network architecture has been
observed in people with schizophrenia as well as healthy volunteers using inter-
regional covariation of gray matter volume (Bassett et al. 2008) as well as resting
state functional connectivity (Liu et al. 2008; Lynall et al. 2010), suggesting that
small-world organization is conserved across individuals with schizophrenia and
healthy controls. However, quantitative differences in small-world network archi-
tecture among people with schizophrenia and healthy controls have emerged.
Small-worldness is significantly reduced in people with schizophrenia relative
to healthy controls across rest and task states (Liu et al. 2008; Lynall et al. 2010;
Ma et al. 2012), and the extent of this reduction may be associated with the
length of illness (Fornito et al. 2011a). Significant reductions in clustering (and the
related notion of local efficiency) have also been observed in people with
schizophrenia (Liu et al. 2008; Wang et al. 2010; Zhu et al. 2016) and some evidence
for increased global efficiency (the harmonic mean of the inverse of the average
shortest path) in schizophrenia has emerged, although this is a less consistent finding
(Alexander-Bloch et al. 2012, 2010; He et al. 2012).

Analyses of topological disturbances in structural connectivity related to schizo-
phrenia have not mapped onto the functional network findings for schizophrenia
in a straight-forward fashion, reinforcing the complex relationship between struc-
tural and functional connectivity observed in the field more broadly (Honey et al.
2010; Damoiseaux and Greicius 2009). Few differences in the overall topology of
structural brain networks, as operationalized through clustering coefficients and
path length, were observed between people with schizophrenia and healthy controls
(van den Heuvel et al. 2010). A diffusion tensor imaging study observed reduced
global efficiency in people with schizophrenia relative to healthy controls (Wang
et al. 2012), a result that differs from functional connectivity findings. In sum,
schizophrenia is characterized by differences in the small-world architecture of
functional brain organization, marked by a subtle randomization of network topol-
ogy (Rubinov et al. 2009), although findings for structural networks are not as clear.

A variation on the dysconnectivity hypothesis of schizophrenia specific to brain
network modularity was proposed by David (1994) and focused on abnormalities in
the segregation of specialized processing regions. From this perspective, symptoms
of schizophrenia reflect a breakdown in the encapsulation of brain systems that are
specialized to carry out different processes. Hallucinations, for example, may result
from cross-communication between inner speech and auditory modules. In line
with this hypothesis, people with childhood-onset schizophrenia exhibit reduced
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modularity in resting state functional connectivity networks relative to healthy
controls (Alexander-Bloch et al. 2010). Indeed, some studies have reported more
and smaller modules in people with schizophrenia relative to healthy controls
(Yu et al. 2012), again providing evidence for altered modular architecture in the
functional networks of schizophrenia. Recent work examining community structure
in individuals with schizophrenia and healthy controls at rest, paired with rigorous
preprocessing techniques to minimize the effects of motion, have also observed
alterations in community structure in individuals with schizophrenia relative to
controls (Lerman-Sinkoff and Barch 2016).

Alongside dysconnectivity in static graphs, deficits in the coordination of large-
scale networks across time have also been proposed to underlie schizophrenia
(Uhlhaas 2013). Braun et al. (2016) examined the reconfiguration of large-scale
brain networks during a working memory paradigm in people with schizophrenia,
unaffected first-degree relatives, and healthy controls. Dynamic changes in the
interactions among brain regions with other regions were captured using a network
flexibility measure that indicated the frequency with which a brain region changed
its allegiance to a community of nodes over the course of the scan. Both patients with
schizophrenia and their relatives showed increased brain-wide, network flexibility
relative to controls. Findings suggest an excess of network flexibility in schizophre-
nia and deficits in the temporal coordination of large-scale networks that underpin
efficient cognitive function. Further evidence for dysconnectivity in dynamic brain
network organization in people with schizophrenia relative to healthy controls
has been observed during resting state scans (Damaraju et al. 2014).

In sum (see Table 1 for overview), network neuroscience has provided tools
to test dysconnectivity hypotheses of schizophrenia across multiple levels of brain
organization. Findings indicate a greater randomization of large-scale brain net-
works in schizophrenia relative to healthy controls as well as alterations in the
modularity of both static and time-varying networks. Notably, approaches aiming
to characterize patients with schizophrenia relative to healthy controls based on
network organization indices (e.g., clustering coefficient) show promising levels of
classification accuracy (Anderson and Cohen 2013), suggesting that
network neuroscience indices may have future clinical utility as biomarkers of
schizophrenia.

Major Depressive Disorder Major depressive disorder is a prevalent psychiatric
disorder associated with extensive personal and societal costs (Greenberg et al. 2015;
Kessler 2012), affecting approximately 6% of the adult population worldwide each
year (Bromet et al. 2011). Depressed mood and diminished interest or pleasure are
core symptoms of depression, with other symptoms including diminished ability
to concentrate, recurrent thoughts of death, and psychomotor agitation or retardation
(see Otte et al. 2016 for a recent review). Contemporary models of major depressive
disorder emphasize dysfunctional interactions between brain networks that are
critical for the regulation of mood, as well as general cognitive, motor, and somatic
behaviors (e.g., Mayberg 1997).
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While small-world organization has been observed in participants with major
depressive disorder as well as healthy controls, findings have been mixed as to
whether there are quantitative differences between patients and controls based on
whether functional or structural networks are under consideration. Indications of

Table 1 Summary of network neuroscience findings for schizophrenia

Study Modality Sample Main findings

Bassett et al. (2008) sMRI 203 SZ
259 HC

• Small-world properties similar in SZ and HC

Van den Heuvel
et al. (2010)

DTI 40 SZ
40 HC

• Small-world properties similar in SZ and HC

Wang et al. (2012) DTI 79 SZ
96 HC

• Small-world properties reduced in SZ relative
to HC

Alexander-Bloch
et al. (2012)

rsfMRI 19 SZ
20 HC

• More connections between modules and fewer
connections within modules in SZ relative to HC

Alexander-Bloch
et al. (2010)

rsfMRI 13 SZ
19 HC

• Small-world properties reduced in SZ relative
to HC
• Reduced density of intra-modular connections in
SZ relative to HC

Damaraju et al.
(2014)

rsfMRI 151 SZ
163 HC

• SZ spend more time in more sparsely connected
brain states relative to HC

Lerman-Sinkoff and
Barch (2016)

rsfMRI 44 SZ
41 HC

• Small changes in modularity across SZ and
HC. Differences in node community participation
in subcortical, somatosensory, auditory, default
mode, and salience networks

Liu et al. (2008) rsfMRI 31 SZ
31 HC

• Small-world properties reduced in SZ relative to
HC

Lynall et al. (2010) rsfMRI 12 SZ
15 HC

• Small-world properties reduced in SZ relative to
HC

Yu et al. (2012) rsfMRI 24 SZ
24 HC

• More numerous and smaller modules in SZ
relative to HC

Zhu et al. (2016) rsfMRI 26 FSZ
26 SSZ
26 HC

• Small-world properties reduced in FSZ relative
to SSZ and HC

Braun et al. (2016) Task 28 SZ
37 UR
139 HC

• Increased flexibility of dynamic community
structure in SZ and UR relative to HC

Fornito et al.
(2011a)

Task 23 SZ
25 HC

• Small-world properties similar in SZ and HC

He et al. (2012) Task 35 SZ
35 HC

• Small-world properties reduced in SZ relative to
HC at medium difficulty
• Small-world properties more variable across
conditions in SZ than HC

Wang et al. (2010) Task 23 SZ
33 HC

• Small-world properties reduced in SZ and HC

Ma et al. (2012) Task;
rsfMRI

28 SZ
28 HC

• Small-world properties reduced in SZ relative
to HC

sMRI structural MRI, DTI diffusion tensor imaging, rsfMRI resting state fMRI, SZ schizophrenia,
HC healthy controls, FSZ familial schizophrenia, SSZ sporadic schizophrenia, UR unaffected first-
degree relatives
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reduced small-world architecture and a shift to randomization in brain networks
have been observed in the functional networks of participants with major depressive
disorder relative to healthy controls (Jin et al. 2011; Zhang et al. 2011). For structural
networks, in contrast, no significant differences in small-world organization or
associated features (e.g., global efficiency, path length, clustering coefficient) were
observed between individuals with major depressive disorders and non-depressed
controls in two studies (Korgaonkar et al. 2014; Sacchet et al. 2014).

While findings are mixed for whole-brain topology in major depressive disorder
across functional and structural networks, examinations of connectivity within
and between modules associated with both emotional and cognitive functions are
providing insight into major depressive disorder (Ye et al. 2015). Interactions
among three modules in particular have been the focus of much attention in net-
work neuroscience studies of major depressive disorder. These modules include the
salience system (SN), central executive system (CEN), and the default mode system
(DMN). The DMN (for review see Buckner et al. 2008) is characterized by deacti-
vation during task and activation during both rest and self-referential tasks (Mazoyer
et al. 2001; Shulman et al. 1997) and encompasses many regions, including posterior
cingulate cortex, precuneus, medial prefrontal cortex, orbital frontal gyrus, anterior
cingulate cortex, inferolateral temporal cortex, parahippocampal gyrus, and bilateral
parietal cortex (Raichle et al. 2001; Thomason et al. 2008; Van Den Heuvel et al.
2009). In contrast to the DMN and its characteristic deactivation during tasks
and activation at rest is the CEN. The fronto-parietal CEN is characterized by
nodes showing increased, rather than decreased, activation during the performance
of cognitive tasks. The nodes of the CEN have established roles in a range of
executive functions, including sustained attention and response suppression (Curtis
and D’Esposito 2003; Jiang and Kanwisher 2003; Ridderinkhof et al. 2004). Due to
the associations between its nodes and executive functions, the CEN is viewed as
essential for guiding goal-directed behavior. Core nodes of the CEN include the
dorsolateral, dorsomedial prefrontal cortex, and the posterior parietal cortex. A core
function of the SN is salience detection, with nodes of the SN activating in response
to different forms of salient stimulation (Uddin 2015; Menon 2015). The SN is also
thought to facilitate access to executive functions by signaling the engagement of
the CEN while suppressing DMN activity (Menon and Uddin 2010; Sridharan et al.
2008).

The putative functions of these three modules as well as the functions resulting
from interactions among them map well onto core aspects of depressive symptom-
atology, including rumination (DMN), emotional disinhibition (CEN), and res-
ponses to salient, emotional events (SN). Importantly, these observations have led
to an integrative model of neural dysfunction in depression focused on the connec-
tivity among these networks (Hamilton et al. 2013). Despite observing few differ-
ences between patients with major depressive disorder and healthy controls in global
features of structural connectivity, Korgaonkar et al. (2014) observed lowered
structural connectivity in two distinct brain modules. The first contained regions
primarily of the DMN, while the second was comprised of regions in the frontal
cortex, thalamus, and caudate regions – areas central to cognitive and emotional
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processing. Increased levels of DMN dominance over CEN have been observed
to be associated with higher levels of depressive rumination in participants with
major depressive disorder (Hamilton et al. 2011). Findings also highlight a potential
role for the SN in the balance of activity between DMN and CEN, with activity of
right fronto-insular cortex (a core component of the SN) exhibiting increasing
activation at the onset of increases in CEN activity and decreases in DMN activity,
while the opposite pattern was observed in healthy controls.

In terms of the reward deficits observed in major depressive disorder, two studies
have observed a role for disturbances in the functional connectivity of the salience
network, default mode network, and a broader reward network (encompassing nodes
such as the ventral striatum) with depression symptom severity (Satterthwaite et al.
2015; Sharma et al. 2017). Satterthwaite and colleagues observed that depression
severity was associated with diminished activity in core nodes of the reward and
reward salience systems during a monetary incentive task, as well as with reduced
connectivity between the ventral striatum and other nodes of the reward system
during rest. Sharma and colleagues focused on symptoms of anhedonia and observed
that reward deficits were associated with hyperconnectivity within the DMN, dimin-
ished connectivity between the DMN and regions of a cingulo-opercular system
involved in salience detection, as well as a decoupling of the nucleus accumbens
from DMN system regions. Notably, these two studies included participants with
diagnoses spanning a range of disorders, allowing for the identification of net-
work features common to reward deficits across a range of disorders that included
depression.

Dynamic connectivity studies indicate that time-varying network organization
of DMN, CEN, and SAL systems deviates from organization observed in healthy
controls in major depressive disorder. Increased connectivity variability has been
observed between regions of the DMN in patients with major depressive disorder
relative to controls, an association that was replicated in a second sample (Wise et al.
2017). In terms of connectivity across modules, patients with major depressive
disorder exhibit decreased variability in the functional connectivity between nodes
of the DMN and CEN relative to healthy controls at rest (Demirtaş et al. 2016).
Increased variability between nodes of the DMN and SAL networks was observed
in people with major depressive disorder relative to healthy controls, and, notably,
higher levels of rumination were also associated with increased variability between
DMN and SAL nodes (Kaiser et al. 2016).

In sum (see Table 2 for overview), large-scale organization features (e.g., small-
world organization) seem less impacted in major depressive disorder relative to
schizophrenia. An emerging finding is that major depressive disorder is character-
ized by dysconnectivity across both static and dynamic measures of connectivity
among three functional modules that map onto core symptoms of the disorder.
Efforts to classify major depressive disorder patients relative to controls based
on these features of network organization show promising results (Demirtaş et al.
2016), indicating potential future clinical utility of network neuroscience findings in
major depressive disorder.
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The review of imaging connectivity features in schizophrenia and major
depressive disorder indicates that network neuroscience is providing insight into
psychiatric disorders. Identifying differences across participants with psychiatric
disorders compared to healthy controls may lead to the discovery of features that

Table 2 Summary of network neuroscience findings for major depressive disorder

Study Modality Sample Main findings

Sacchet et al.
(2014)

DWI 14 MD
18 HC

• Small-world properties similar in MD and HC

Korgaonkar et al.
(2014)

DTI 95 MD
102 HC

• Small-world properties similar in MD and HC
• Connectivity in two networks, one involving
DMN regions and a second comprising frontal
cortex, thalamus, and caudate regions, was reduced
in MD relative to HC

Demirtaş et al.
(2016)

rsfMRI 27 MD
27 HC

• Connectivity variability between DMN and FPN
decreased in MD relative to HC

Hamilton et al.
(2011)

rsfMRI 17 MD
17 HC

• DMN dominance over CEN similar in MD and HC
• rFIC showed increased activity during initiation of
rise in CEN activity in MD but not in HC
• rFIC showed increased activity during initiation of
rise in DMN activity in HC but not in MD
• Greater DMN dominance over CEN associated
with greater depressive rumination in MD

Jin et al. (2011) rsfMRI 16 MD
16 HC

• Small-world properties reduced in MD relative
to HC

Kaiser et al.
(2016)

rsfMRI 100 MD
109 HC

• Connectivity variability among mPFC and DMN
regions decreased in MD relative to HC
• Connectivity variability among mPFC and a
region of the right insula

Satterthwaite et al.
(2015)

rsfMRI 27 BPD
25 UPD
37 HC

• Depression severity correlated with diminished
reward network connectivity

Sharma et al.
(2017)

rsfMRI 32 MD
32 BD
51 SZ
51 PR
39 HC

• Reward deficits were associated with decreased
connectivity between NAcc and DMN and increased
connectivity between NAcc and CON across all
groups, including MD
• Reward deficits were associated with DMN hyper-
connectivity and diminished connectivity between
DMN and CON

Wise et al. (2017) rsfMRI 20 MD
19 HC

• Connectivity variability between mPFC and PCC
(nodes of DMN) greater in MD relative to HC

Zhang et al.
(2011)

rsfMRI 30 MD
63 HC

• Small-world properties reduced in MD relative
to HC

DWI diffusion-weighted imaging, DTI diffusion tensor imaging, rsfMRI resting state fMRI, MD
major depression, HC healthy controls, BD bipolar disorder, SZ schizophrenia, PR psychosis risk,
BPD bipolar depression, UPD unipolar depression, DMN default mode network, FPN fronto-
parietal network, CEN central executive network, rFIC right fronto-insular cortex, mPFC medial
prefrontal cortex, NAcc nucleus accumbens, CON cingulo-opercular network, PCC posterior
cingulate cortex

90 D. M. Lydon-Staley and D. S. Bassett



aid in diagnosis – a key aim for biomarkers. Differences across patients and healthy
controls in the organization of brain networks may also provide insight into the
mechanisms underlying the disorders, as molecular correlates of network features
are beginning to be uncovered. To provide a richer intuition for these relations, we
next examine genetic, molecular, and environmental correlates of brain network
features.

4 Genetic and Molecular Correlates

Imaging genetic approaches aim to identify genes that are associated with network
features of interest. The identification of genes associated with features of network
organization allows a greater understanding of how that feature is related to biolog-
ical processes by considering the biological actions of the associated genes. A
number of quantitative and molecular genetic approaches have been enlisted in
network neuroscience efforts, from establishing that brain network features are
under some degree of genetic control to examining the mechanisms of individual
genes (see Thompson et al. 2013).

Foundational work has demonstrated that there is substantial heritability of brain
network organization (Bohlken et al. 2014). Notably, the genetic factors involved
in network organization have been observed to be independent of the genetic
factors associated with gray matter density of nodes within particular regions (i.e.,
local features of the brain; Glahn et al. 2010). Global network features, such as
cost-efficiency, path length, and the small-world organization of both structural and
functional brain networks, have all been demonstrated to exhibit substantial herita-
bility (Fornito et al. 2011b; Jahanshad et al. 2012; Schmitt et al. 2008).

Findings of heritability provide important initial evidence that brain network
organization is under genetic control. However, heritability estimates provide
little information concerning the specific genes that contribute to the observed
heritability. Candidate gene approaches examine the influence of variations in
genotypes, chosen based on biologically plausible mechanisms, to determine how
specific genetic factors affect the organization of brain networks. These approaches
are beginning to shed light on how genetic variation may influence risk for psycho-
pathology through associations with network connectivity. A number of studies
have examined associations between genetic variants and a number of indices of
brain connectivity. These studies have implicated a number of genetic variants in
between-person differences in connectivity across regions of the brain (see Fornito
and Bullmore 2012 for a recent review).

Much less work has examined associations between genetic variants and large-
scale network organization. We discuss two noteworthy exceptions. Li et al. (2013)
examined how variation in the disrupted-in-schizophrenia 1 (DISC1) gene was
related to the efficiency of structural brain networks in healthy participants. DISC1
is involved in a number of neurodevelopmental processes with implications for brain
connectivity, including neurite outgrowth, myelination, and axon guidance (Chen
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et al. 2011; Jaaro-Peled et al. 2009). A common missense variant, ser704Cys
(rs821616), in the DISC1 gene has been associated with schizophrenia and also
affective disorders (Arias et al. 2014; DeRosse et al. 2007; Qu et al. 2007). Li and
colleagues observed that Cys-allele carriers, relative to Ser homozygotes, exhibited
longer shortest path length and lower global efficiency of structural networks,
suggesting a role for DISC1 in the topological properties of brain network features
implicated in psychiatric disorders.

In another noteworthy study, Markett et al. (2016) examined associations
between variation on the tryptophane hydroxylase 2 gene’s promotor region
(TPH2 rs4570625) and structural connectivity of rich-club pathways. The rich
club is a collection of nodes that are particularly rich in connections, tend to connect
to one another, and thereby play a prominent role in the brain’s overall network
organization (Van Den Heuvel and Sporns 2011). The focus on TPH2 was chosen
due to its role as a regulatory enzyme involved in limiting the rate of serotonin
biosynthesis in the brain (Zhang et al. 2004). Based on findings of decreased mRNA
expression for TPH2 in TPH2-703 T-allele carriers relative to G/G carriers and
resultant reductions in levels of TPH2 concentrations throughout serotonergic neu-
rons (Scheuch et al. 2007), Markett and colleagues hypothesized that reduced
serotonin biosynthesis would be present in the T-allele carriers. Given that serotonin
inhibits axonal growth (Trakhtenberg and Goldberg 2012), increased structural
connectivity was hypothesized in T-allele carriers relative to G/G carriers due
to decreased inhibition of axonal growth. In line with this hypothesis, higher
connectivity in the rich club was observed in carriers of the TPH2 T-variant relative
to G/G carriers.

While the candidate gene approach has been popular in work to date, genome-
wide association studies (GWAS) will be useful to identify novel genetic determi-
nants of network features (Bush and Moore 2012). GWAS approaches involve
genotyping markers spanning the genome and searching for loci that influence
phenotypes (e.g., network features). These approaches are beginning to provide
insight into the genetic variants that are associated with features of brain network
organization that are disrupted in disorders. For example, using a GWAS approach,
O'Donovan et al. (2008) identified a single nucleotide polymorphism, rs1344706, in
ZNF804A that was associated with schizophrenia. A later study, by establishing
an association between rs1344706 genotype variation and functional connectivity
among regions of the dorsolateral prefrontal cortex and hippocampal formation,
provided evidence that the genetic risk for schizophrenia associated with variation
in rs1344706 may be conferred through impacting brain network organization
(Esslinger et al. 2009).

Findings of associations between genetic variants and features of brain organiza-
tion from either candidate gene or GWAS approaches are compelling, especially in
the context of plausible biological mechanisms. However, experimental approaches
that manipulate or observe the proposed mediating mechanisms linking genetic
variation to network organization (e.g., neurotransmitter activity) are important
for establishing the viability of the proposed mechanisms and also, in turn, for
highlighting other potential candidate genes that may confer risk for
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psychopathology. This will be especially important for major depressive disorder for
which, in contrast to schizophrenia, it has been relatively difficult to identify
associated genetic variants (Major Depressive Disorder Working Group of the
Psychiatric GWAS Consortium 2013; but see also Hyde et al. 2016; Okbay et al.
2016).

Studies using a range of techniques have established roles for dopamine, gluta-
mate, and norepinephrine in preserving efficient network organization. A key role
for dopamine in modulating spontaneous oscillations in basal ganglia and the
coherence of neuronal activity between components of cortico-striato-thalamic
circuits has emerged from nonhuman animal studies (Dejean et al. 2008; Walters
et al. 2000). Recent work is further establishing a role for dopamine in brain
networks in humans. Carbonell et al. (2014) examined how alterations in the dopa-
mine system related to resting state network modularity and overall patterns of
connectivity. Participants were scanned twice, once following a balanced amino
acid mixture and once following a mixture that was tyrosine and phenylalanine
deficient. This acute tyrosine and phenylalanine depletion technique decreases
dopamine synthesis and reduces baseline dopamine levels as well as dopamine
release in response to stimulation (Montgomery et al. 2003). Blood samples drawn
to measure plasma amino acid concentrations indicated that the amino acid pre-
cursors of dopamine were indeed reduced following the tyrosine and phenylalanine
deficient mixture relative to the balanced mixture. In the lowered dopamine state,
following the tyrosine and phenylalanine deficient mixture, a number of effects
on brain network connectivity were observed. The global and local efficiency of
brain networks, as well as the modularity of brain networks, were reduced following
dopamine precursor depletion. Short-range connections within the frontal lobe were
reduced in the lowered dopamine state, and reduced connectivity between the frontal
lobe and posterior association areas was observed. Finally, connectivity between the
default mode network and the task positive network was increased in the low
dopamine state. This experimental manipulation and its associated results highlight
a role for dopamine in maintaining the modularity and efficiency of resting state
brain networks, as well as in maintaining segregation of the default mode and
task positive networks. Reductions in functional network efficiency have also
been observed following a dose of a dopamine receptor antagonist (Achard and
Bullmore 2007).

In terms of the role of glutamate, alterations in the cellular excitation-inhibitory
balance have been theorized to disturb the neural synchrony of large-scale cell
ensembles, giving rise to dysconnectivity at the level of neural ensembles that
has been observed in psychopathology (Krystal et al. 2003; Uhlhaas 2013; Yizhar
et al. 2011). As neural excitation-inhibitory balance is dependent on glutamatergic
N-methyl-D-aspartate (NMDA) receptor function (Carlén et al. 2012), the effects of
NMDA receptor antagonists on brain network organization have been examined.
Braun et al. (2016) tested the effects of a single dose of the NMDA antagonist
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dextromethorphan (DXM) on functional network flexibility during a working
memory task in healthy participants. Note that while DXM binds to NMDA recep-
tors, it may also impact serotonin transporters and other targets, including sigma-1
receptors (Werling et al. 2007). Network flexibility was increased following appli-
cation of DXM relative to a placebo condition. Notably, the association between
DXM and network flexibility was observed as a brain-wide effect and was not driven
by changes in the flexibility of a single system. Thus, the hypo-glutamatergic state
induced a network hyper-flexibility consistent with differences in network flexibility
observed across patients with schizophrenia and healthy individuals (Braun et al.
2016). Further evidence for a role for NMDA receptor function in the organization
of functional networks has emerged in work showing that administration of ketamine
(an NMDA receptor antagonist) disrupted the association between CEN and
DMN neural systems in a way that correlated with working memory performance,
as well as the expression of symptoms of schizophrenia (Anticevic et al. 2012).

Pharmacological intervention approaches are not always feasible for examining
the neuromodulatory systems that underpin network features due to ethical issues but
also due to the timescales on which certain network features change. An example
of a non-pharmacological intervention approach comes from Shine et al. (2016)
who examined coupled changes in functional connectivity and pupil diameter
over the course of a resting state scan. Fluctuations in pupil diameter co-vary with
locus coeruleus activation, an activation that is linked to norepinephrine release
that results in coordinated neural activity patterns throughout many parts of the brain
via modulation of neural gain (Aston-Jones and Cohen 2005; Eldar et al. 2013;
Joshi et al. 2016). By classifying brain network organization into two states charac-
terized by either integration or segregation and capturing both fluctuations in these
two states and in pupil diameter across the resting state scan, Shine and colleagues
observed that brain network integration correlated with increases in pupil diameter.
These findings highlight a role for norepinephrine in the relatively fast fluctuations in
network organization that underpin fast and accurate cognitive performance. Further
support for a role for norepinephrine and fluctuations in network organization comes
from a study by Betzel et al. (2017) that observed an association between level
of arousal (a state known to be associated with norepinephrine; España et al. 2016)
and the flexibility with which nodes changed communities across time.

In sum, a combination of candidate gene, GWAS, and experimental studies
is providing insight into the extent to which brain organization is heritable, associ-
ated with certain genetic variants, and with differences in neurochemical function-
ing. The focus on genetic drivers of network features is in line with the high
heritability estimates of psychiatric disorders. However, there are also environmental
risk factors for psychopathology (Rutter 2000), and the effects of genotype on
psychiatric disorders may be conditional on environmental experiences (Kendler
et al. 1995). As such, we turn to a discussion of the role that environmental factors
play in psychopathology and brain network organization.
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5 Environmental Factors

In terms of environmental factors involved in schizophrenia, approximately 60%
of patients with schizophrenia do not have an affected first-degree relative and
heritability estimates range between 60–80% (Brown 2011; Sullivan et al. 2003).
For major depressive disorder, heritability estimates are in the range of 31–42%
indicating substantial environmental factors in the disorder (Lohoff 2010; Sullivan
et al. 2000). The substantial variance in psychopathology associated with environ-
mental experiences necessitates a consideration of factors beyond genetics. Emerg-
ing work is examining how environmental factors may lead to changes in network
connectivity indices observed to be associated with psychopathology. We provide
an overview of two environmental factors, socioeconomic status and social network
structure, that exhibit associations with both psychopathology and brain network
organization.

Socioeconomic status (SES) is a multidimensional construct that includes
measures of economic resources and is typically assessed with income, education,
occupation, as well as combinations of these indicators (Braveman et al. 2005;
Krieger et al. 1997). Low SES is associated with greater risk for schizophrenia
(Werner et al. 2007) and major depressive disorder (Lorant et al. 2003), as well
as psychopathology more generally (Kohn et al. 1998). The mechanisms driving
associations between low SES and psychopathology may be articulated as social
causation and social selection hypotheses. Social causation hypotheses posit that
people with low SES develop psychological problems in response to exposure
to adverse life circumstances. Social selection hypotheses, in contrast, posit
that people with psychopathology drift down the SES ladder due to an inability to
fulfill role obligations resulting from their psychopathology or by inheriting risk
through genetic pathways. Of course, either hypothesis alone is unlikely to capture
the complex, reciprocal dynamics between selection and causation processes
that may operate across development, leading to interactionist perspectives of SES
that consider both processes (Conger and Donnellan 2007). Tests of interactionist
models of the effects of SES require complex study designs over long periods of
time (e.g., Capaldi et al. 2003) to disentangle the contributions of social selection,
social causation, or a combination of the two to psychopathology and brain network
organization.

The difficulties in establishing causality notwithstanding, network neuroscience
is in a prime position to examine the structural and functional brain network features
that are impacted by low SES experiences, which place individuals at risk for
psychopathology. There is substantial evidence from nonhuman animal work that
exposure to deprived environments modifies the brain (Mohammed et al. 2002; Van
Praag et al. 2000). There is also human work showing local structural and functional
brain differences across levels of SES (Gianaros et al. 2011; Kishiyama et al. 2009).

Much less work has examined large-scale network features but two noteworthy
exceptions exist. Krishnadas et al. (2013) examined the modular architecture of brain
network structure in men from the most deprived and least deprived neighborhoods
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of Glasgow, Scotland. Using region-wise cortical thickness correlations, they
observed differences in the modular structure of brain graphs. Structural networks
of the least deprived group showed stronger modular organization relative to random
graphs, while structural networks of the most deprived group showed the same
number of modules relative to their corresponding random network. The most
deprived group, then, exhibited a weakened modular structure, with more edges
between modules relative to the least deprived group. The least deprived group also
had greater indications, relative to the most deprived group, of brain network
architecture that would facilitate efficient information transfer between modules.
The results, as a whole, establish evidence of a relationship between socioeconomic
status and network topology.

A second study examined the implications of SES for the development of
functional networks during the first year of life (Gao et al. 2015). Longitudinal
growth trajectories of nine functional modules (Smith et al. 2009) were examined
in terms of their within-module connectivity, between-module connectivity, and
overall similarity to adult references at five time points during the first year of life.
At age 6 months, both higher income and higher maternal education were associated
with greater similarity to adult references and higher within-module connectivity.
Further, higher income was associated with lower between-module connectivity.
Thus, indications of reduced modular structure across functional brain networks
were associated with low SES – in line with findings of structural connectivity in
adults. An important future direction for work on SES is to examine the mechanisms
through which low SES “gets under the skin” to influence network connectivity.
Candidate mechanisms for SES effects on the brain include exposure to stressful
experiences, social support, toxins, and stimulating activities (Hackman et al. 2010).

An additional environmental factor that is beginning to receive attention for
its impact on brain networks is one’s social network structure. Social support is
the emotional support, guidance, and tangible aid available to the individual through
social ties to other individuals, groups, and the larger community (Lin et al. 1979;
Wills 1991). Social support has long been known to have beneficial effects on
mental and physical health (for review see Taylor 2011). In schizophrenia, positive
relationships with the individuals in one’s social network are associated with fewer
symptoms and greater levels of functioning (Pahwa et al. 2016). Further, social
networks of greater size, containing a greater number of individuals outside of the
family and that provide greater levels of support, are associated with greater quality
of life in people with schizophrenia (Cechnicki et al. 2008). Lower levels of
social support may also act as a risk factor for major depressive disorder (Wade
and Kendler 2000). Increased contact with one’s social network is associated with
fewer depressive symptoms (Sugisawa et al. 2002), and multiple aspects of social
network characteristics are associated with depression recovery over a 2-year period
(van den Brink et al. 2017).

In terms of etiology, frameworks for understanding the role of social network
stress and support in impacting both schizophrenia and major depressive disorder
have implicated the engagement of neural stress regulatory circuits that, with chronic
stress, lead to long-term physiological and neurobiological changes that increase
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the risk for pathological states (Akdeniz et al. 2014; Slavich and Irwin 2014).
In these frameworks, social networks play stress-buffering roles, attenuating the
physiological stress response (Cohen and Wills 1985; Seeman and McEwen 1996;
Young et al. 2014).

The extent to which social network structure and function buffers experiences
of stress to protect against brain network changes that increase vulnerability to
developing psychopathology remains to be seen. However, a number of ground-
breaking studies linking brain network function to social network structure have
laid the foundations for future work in this area (see Falk and Bassett 2017 for
review). Schmälzle et al. (2017), for example, examined the moderating role of
social network structure on the effect of social exclusion on functional brain network
architecture. The experience of social exclusion was simulated through the use of a
well-validated game referred to as Cyberball (Williams et al. 2000) in neurotypical
adolescent males. Functional connectivity within the mentalizing network – a group
of regions involved in the process of inferring others’ affective states encompassing
the medial prefrontal cortex, precuneus/posterior cingulate cortex, and the temporo-
parietal junction (Frith and Frith 2006; Schnell et al. 2011) – increased during social
exclusion. Notably, the strength of functional connectivity between two key nodes of
the mentalizing network was related to social network structure as measured by
ego-network density based on objective social media data. A dense ego-network
indicates a close-knit social network in which participants’ friends are also friends
with one another (Hurlbert et al. 2000). Less dense ego-networks, in contrast, reflect
social networks in which a participant’s friends do not know each other. Participants
with a less dense social network exhibited stronger coupling between key regions of
the mentalizing network during social exclusion. The findings highlight differences
in the brain network response to social exclusion, a potent source of stress, based
on preexisting social network characteristics.

Important foundational work remains to be conducted to examine the extent to
which network features, especially large-scale topological features, are associated
with environmental factors such as SES and social network structure and function.
Establishing the mechanisms through which environmental factors impact brain
network structure and function will also be integral for a better understanding of
the causes and consequences of psychopathology. In considering these mechanisms,
it will be valuable for both our understanding of mechanisms and for intervention
possibilities to work within frameworks that emphasize the bidirectional inter-
play among intra- and extra-organismic levels of analysis across development
(Magnusson and Cairns 1996). Observed brain network features reflect, in part,
experience-dependent organization (Sporns 2013). Indeed, patterns of structural and
functional connectivity are thought to result from histories of co-activation of
regions across cognitive processes and actions. The more frequently processes are
used, the more entrenched they are thought to become in functional modules
detectable during resting state analyses. This proposition stems from a network-
level application of Hebbian theory in which “neurons that fire together, wire
together” and is consistent with observations of training-induced changes in network
organization (e.g., Bassett et al. 2015; Takeuchi et al. 2010; Taubert et al. 2010).
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The experiences available across different environments also likely impact network
features given that behavior can be conceived of as the leading edge of adaptation –

with the individual’s activity at the boundary of the individual and their environment
capable of inducing change in the environment and the structures of the individual
to facilitate adaptation (Gariepy 1996). As such, incorporating measures of every-
day behaviors, using experience-sampling designs, for example (Bolger et al. 2003;
Shiffman et al. 2008), into studies examining network organization changes in
response to the environment will be key for establishing mechanisms underlying
change.

6 Open Frontiers

Work to date suggests that network neuroscience has the potential to inform our
understanding of psychiatric disorders. In this section, a number of open frontiers are
described that will bring the field closer to its aims of providing tools that aid in the
diagnosis, determination of prognosis, and prediction and monitoring of responses
to intervention.

A key challenge for the study of network neuroscience in psychiatry is to adopt
designs that move beyond an examination of associations between genetic variants
and environmental factors and the presence or absence of psychopathology. Devel-
opmental psychopathology perspectives hold that psychiatric disorders constitute
end points of interactions between genetic and environmental risk factors that impact
normal brain development, leading researchers to highlight that adult imaging
phenotypes represent systems resulting from a developmental process in which
environmental stressors interact with genetic vulnerability to contribute to the
emergence of psychopathology (Viding et al. 2006). From this perspective, an
understanding of psychopathology and its causes will be bolstered by situating
the study of network neuroscience and psychiatry within a developmental frame-
work and making use of intensive longitudinal data to capture within-person change
in brain network organization across typical and atypical development (Bergman
and Magnusson 1997; Menon 2013).

Existing classification systems in psychiatry are descriptive, relying on identify-
ing combinations of symptoms to reach a diagnosis of a disorder, and provide a
challenge for network neuroscience applications. There is tremendous heterogeneity
in brain network organization among individuals with the same diagnostic label
(Fried and Nesse 2015; Galatzer-Levy and Bryant 2013). Work to date has relied on
diagnostic categories to define patient versus healthy control groups and, as such,
has inherited existing difficulties in identifying the mechanisms underlying hetero-
geneous disorders. Going forward, imaging connectivity approaches must be paired
with innovations in theoretical frameworks that rely less on monothetic diagnostic
criteria and more on approaches that recognize the dimensional nature of mental
disorders. The theoretical components of such an approach are emerging in RDoC
(Insel et al. 2010) and in network approaches to psychopathology (Borsboom 2017;
Fried and Cramer 2016).
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To date, imaging connectivity approaches have provided insight into the network
features that distinguish healthy controls from participants with psychiatric diagno-
ses. Much less work has examined the ability for network features to contribute to
differential diagnoses of psychiatric disorders. Given that the standard of care differs
across diagnostic categories, this will be an important achievement to meet in order
for imaging connectivity features to act as feasible biomarkers (Savitz et al. 2013).
This aim will be met by including participants across diagnosis categories to identify
common and dissociable aspects of connectivity (e.g., Satterthwaite et al. 2015).

There are a number of challenges associated with network neuroscience method-
ologies that place limitations on their capacity to act as biomarkers. Chiefly, there are
many freely selectable parameters during the analysis of imaging data. Small
variations in the implementation of connectivity analyses can impact resulting
features to the extent that associations with genetic variation and network features,
for example, can be observed for specific implementations of connectivity analyses
but not others (Bedenbender et al. 2011). While this will be an ongoing challenge,
work providing a better understanding of the effects of differing data processing
pipelines is emerging that will aid in establishing guidelines for best practices in the
analysis of brain networks (Ciric et al. 2017; Zhang et al. 2016).

7 Conclusion

Network neuroscience provides an array of tools and concepts capable of capturing
the complex features of brain (dys-)organization that have been long-theorized to
underpin psychiatric disorders. Applications of network analysis have revealed
organizational principles of healthy brains that allow for efficient, flexible, and
robust information processing. These mathematical tools and conceptual frame-
works have allowed for fruitful research into how brain organization deviates from
optimal organization in psychiatric disorders. There is promising potential for
network neuroscience to highlight the mechanisms associated with psychopathology
and to provide tools that aid in diagnosis and in evaluating treatment response.
Further progress will be gained by incorporating network neuroscience techniques
within developmental psychopathology frameworks that recognize the limitations of
current clinical nosology.
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