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Modeling brain, symptom, and behavior in the winds of
change
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Neuropsychopharmacology addresses pressing questions in the study of three intertwined complex systems: the brain, human
behavior, and symptoms of illness. The field seeks to understand the perturbations that impinge upon those systems, either driving
greater health or illness. In the pursuit of this aim, investigators often perform analyses that make certain assumptions about the
nature of the systems that are being perturbed. Those assumptions can be encoded in powerful computational models that serve
to bridge the wide gulf between a descriptive analysis and a formal theory of a system’s response. Here we review a set of three
such models along a continuum of complexity, moving from a local treatment to a network treatment: one commonly applied form
of the general linear model, impulse response models, and network control models. For each, we describe the model’s basic form,
review its use in the field, and provide a frank assessment of its relative strengths and weaknesses. The discussion naturally
motivates future efforts to interlink data analysis, computational modeling, and formal theory. Our goal is to inspire practitioners to
consider the assumptions implicit in their analytical approach, align those assumptions to the complexity of the systems under
study, and take advantage of exciting recent advances in modeling the relations between perturbations and system function.

Neuropsychopharmacology (2021) 46:20–32; https://doi.org/10.1038/s41386-020-00805-6

INTRODUCTION
In the Dancing Forest on the Curonian Spit in Kaliningrad Oblast,
Russia, dozens of pine trees loop around in rings, spirals, hearts,
and squiggles. Some inquisitive minds have suggested the work of
shifting sands or of Rhyacionia buoliana caterpillars, whereas a
naive observer might instead turn to the whims of a capricious
wind to explain the dances seemingly frozen in time. And
precisely how might wind perturb a tree? The answer depends
upon the nature of the form “tree”. If a tree were simply a trunk,
resting on the ground, then a gust of wind could quite easily raze
the tree. If, instead, a tree were a trunk with roots grasping the
dirt, then a gust of wind might require additional energy to raze
the tree, disturbing the dirt in the process. Finally, if a tree were
not standing alone but in a forest of other trees characterized by
an intertwined root system, then a gust of wind might require
even more energy to raze the tree, disturbing both the dirt and
the surrounding trees.
The thought experiment of tree and wind may initially seem

esoteric. But upon closer inspection, open questions about the
Dancing Forest display marked similarities to questions of
fundamental import to neuropsychopharmacology. The tree we
care about is a human brain, or a human symptom of
psychopathology, or a human behavior. A wind may perturb the
tree, either to raze it or twist it, into something beautiful or
something broken. In common parlance, that wind may be a
change in environment or context, a life event, a healthy or altered
neurodevelopmental process, a pharmacological treatment, or a

stimulation regimen. Our capacity to predict the beneficial or
detrimental impacts of perturbations on brain, symptom, or
behavior, depends in part upon the depth of our understanding of
the nature of the form “brain”, or “symptom”, or “behavior”.
And what is the nature of the form “brain”? or “symptom”? or

“behavior”? In some studies, we throw up our hands, admitting
that we still cannot answer. We instead attempt simply to measure
that nature. In other studies, we take a pragmatic tack by
assuming a particular nature, thereby allowing us to subsequently
make particular inferences. As the tree is assumed to be solely a
trunk, a brain region is assumed to be an isolated volume with no
connection to other brain regions; a symptom is assumed to be a
self-reported experience with no dependence upon other
experiences; and a behavior is assumed to be a response to a
task with no relation to other responses. Such assumptions
implicit in our experimental setup and analysis directly influence
the type of inferences that we can draw from our results: the
strength of the wind that we predict to be necessary to dance
the tree.
Here we consider three common assumptions implicit in our

analysis of empirical data in the spheres of brain, symptom, and
behavior. We clarify how those assumptions correspond to
existing formal models, each of increasing complexity: a
commonly applied form of the general linear model (GLM) (tree
trunk), impulse response models (tree trunk with roots), and
network control models (forest). In each section, we first describe
the model with brevity and simplicity. Next, we review how the
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model has been used in recent literature to understand neural,
symptom, and behavior systems. Finally, we address the strengths
and weakness of each model. Our presentation motivates a
discussion of future directions in both basic and clinical science,
and a thoughtful examination of the relative merit of different
points along the continuum from machine learning to computa-
tional modeling to theory. The nature of our contribution is partly
organizational; we offer the reader an organized account of
existing and emerging computational models generically relevant
to open challenges in neuropsychopharmacology. Moreover, we
provide readers with conceptual tools to reason about their
underlying assumptions.

THE SYSTEMS RELEVANT FOR NEUROPSYCHOPHARMACOLOGY
As a field, our scientific investigations often seek to understand a
complex system in light of perturbations to the system’s structure
or function. Such perturbations may be enacted by the environ-
ment, designed by laboratory personnel, or offered by trained
clinicians. The systems upon which these perturbations impinge
are myriad, but our remarks will largely center around the systems
of brain, symptom, and behavior (Fig. 1). In what follows, we will
use the term brain to refer to the cerebrum and all of its
components; the term symptom to refer to a self-reported
experience that may be especially intense in states of mental
illness; and the term behavior to refer to a measurable (and
measured) action that need not be altered in psychiatric or
neurological disorders. Below we describe the components of
each system and their interconnected nature, as well as the
relevance of interconnectivity for perturbations. This discussion
will allow us to move to a description of associated modeling
efforts in the following sections.

THE NEURAL SYSTEM
Parts and relations
Neural systems are composed of computational and modulatory
units that serve to receive, process, alter, and transmit
information. Such units exist across multiple spatial scales, from

the microscale of individual cells to the mesoscale of cortical
columns, and thereafter to the macroscale of nuclei and
cytoarchitectonically distinct areas [1, 2]. Independent of the
spatial scale, units are interconnected with one another in a
heterogeneous pattern of physical links that support commu-
nication, coherence, and other sorts of functional interactions
[3–5]. Physical links at the small scale comprise synapses and
gap junctions [6], and at the large scale comprise large axonal
bundles or white matter tracts [7–9]. The complete neural
system thus comprises both parts and pathways, or conduits for
relations.

Network representation
Early studies of macaque, cat, and Caenorhabditis elegans
connectomes suggested the potential utility of representing
neural systems as formal mathematical objects known as graphs
or networks [10]. In its simplest instantiation, a network is
composed of nodes which represent a system’s units, and those
nodes are connected in pairs by so-called edges which represent a
system’s inter-unit links, relations, or interactions [2]. From the
pattern of edges between nodes, the structure, function, and
dynamics of systems can in part be inferred, offering putative
explanations for a system’s manifest complexity [11]. The network
representation has since proven useful in characterizing the
interconnected architecture of neural systems across many
organisms including humans [12], and the alteration of that
architecture in conditions of mental illness and injury [13–15].

Network perturbations
The notion that neural systems are fundamentally network
systems has changed the way we think about clinical interven-
tions to support mental health. The most common mechanism of
action of pharmacologic interventions for neuropsychiatric illness
is the manipulation of distributed neurotransmitter systems.
Neurotransmitter systems fall into two major categories: fast
ionotropic neurotransmission and slow metabotropic neurotrans-
mission [16]. The latter includes the frequently targeted serotonin
[17–19], dopamine [20], and norepinephrine [17, 18] systems.
Metabotropic neurotransmitters modulate ionotropic neurotrans-
mission [21, 22], and as a result, the effects of perturbing
neurotransmission unfold over multiple time scales. Varying
metabotropic neurotransmitter input, also called neuromodula-
tion, can drive groups of neurons to exhibit different patterns of
coordinated firing [21], suggesting that neurotransmitters funda-
mentally influence network interactions rather than eliciting
simple increases or decreases in firing.
Neuromodulatory medications cross the blood–brain barrier to

reach every brain region, with effects depending on binding
profiles of drugs as well as regional expression of neurotransmitter
receptors [23]. The mechanism of neurotransmitter action also
differs across the brain and depends on external demands [22, 24].
This spatial heterogeneity and state-dependence prevents us from
understanding how pharmacotherapy perturbs individual regions
in isolation, because a region of interest may be affected by
changing inputs from its interacting partners. In our analogy,
when there are winds coming from several directions, it is similarly
hard to tell which gust had the biggest impact on the tree.
Network representations resolve this complexity by allowing the
brain to be studied as a whole, rather than as individual regions or
even pairwise interactions. Indeed, manipulations of neurotrans-
mitters shift interregional interactions in a way that can be
parsimoniously characterized as affecting global network flex-
ibility, segregation, and integration [25, 26]. Metabotropic
neurotransmitter systems may contribute to separable compo-
nents of large-scale fluctuations in cortical activity [27], which may
allow the design of future therapeutics to target specific subsets of
network interactions. Dynamical network models of neural
systems provide a promising computational toolkit for testing

Fig. 1 Overview of systems, perturbations, and models. a Here we
depict the three systems (blue) of brain, symptom, and behavior.
Perturbations (rose) including stimulation, pharmacological inter-
ventions, life events, and changes in environment can affect each. b
We can attempt to understand these systems and their responses to
perturbations using computational models (green) of varying
complexity.
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hypotheses about the associations between neurotransmitter
systems, brain activity, and behavior.

THE SYMPTOM SYSTEM
Parts and relations
Symptoms of mental disorders tend to co-occur. For example,
individuals receiving treatment for psychiatric disorders experien-
cing sad mood are likely to also experience anhedonia [28].
Indeed, the formation of symptom clusters is reflected in
diagnostic practices; a patient must present with five (or more)
symptoms out of a list of nine to be diagnosed with major
depressive disorder according to the Diagnostics and Statistical
Manual [29]. Traditionally, this symptom co-occurrence is
explained by assuming that an underlying, latent disease gives
rise to groups of symptoms.

Network representation
Network perspectives of mental disorders provide an alternative
account to explain symptom co-occurrence [30, 31]. A network
approach to psychopathology suggests that symptoms are not
simply interchangeable indicators of a latent disorder. Instead,
individual symptoms are interesting in their own right and
influence one another over time, forming causally connected
networks [32, 33]. In line with this perspective, individual
symptoms of disorders can vary in their time of onset, their
severity, and even in their response to treatments [34–37]. Further,
there exists a substantial body of literature that makes use of
intensive repeated measures of symptom intensity from moment-
to-moment and day-to-day to quantify time-lagged associations
between symptoms; these studies provide strong evidence for
symptom interplay across time [38–40].

Network perturbations
The network perspective provides a framework within which to
capture the importance of individual symptoms as well as the
intuitive notion that symptoms act to causally influence one
another across time. By focusing on individual symptoms and their
interplay, it also puts forward a new perspective for understanding
the etiology of mental disorders. A key role is given to a
phenomenon termed hysteresis [30, 41] whereby once a system
shifts to an alternative state (e.g., a person becomes depressed), it
tends to remain in the new state until the external input that led
to the change is changed back to a much lower level than was
needed to trigger the change in state. The maintenance of a state
of psychopathology, consisting of high levels of symptom activity
is theorized to occur only in strongly connected networks,
consisting of many time-lagged associations between network
components. When a symptom in such a strongly connected
network is perturbed (e.g., the experience of a stressful life event),
symptom activity spreads through causal associations in the
network to other symptoms, resulting in a self-sustaining
symptom network.

Beyond symptoms
One of the early principles of the network theory of mental
disorders was that the components or symptoms in a psycho-
pathology network correspond to problems that have been
codified as symptoms in the past century and that are detailed in
contemporary diagnostic manuals [30]. This focus on symptoms
encoded in diagnostic manuals as the main components of a
symptom network preserves the rich information available in
diagnostic manuals, emerging from years of clinical observation
[42]. Working from this principle, other aspects of human
functioning not encoded in diagnostic manuals must (i) constitute
a symptom (e.g., a brain-based realization of a symptom), (ii)
constitute a symptom-symptom connection, or (iii) act as a
variable in the external field that causes a symptom.

THE BEHAVIOR SYSTEM
Parts and relations
What are these extra-symptom aspects of human functioning? It
may be reasonable to refer to some such aspects as behavior.
Informed by the scientific method, one might define a behavior as
a measurable (and measured) action: an interaction with the
environment. A common example is a reaction time measured in
response to a cognitive demand. A second kind of an extra-
symptom aspect of human functioning is a person’s emotional
state. While distinct from behavior, emotional states can similarly
be measured in response to a task manipulation. Both states and
actions, however, are not independent but instead can interact.
Humans may be more likely to move from a state of contempt to a
state of fear than from a state of disgust to a state of joy [43].
Similarly, the measured speed of an action is typically inversely
correlated with the measured accuracy of an action [44, 45].
Moreover, a given action might impact a subsequent action
manifesting as an asymmetric switch cost [46–49]. Thus, both
behavior and state are systems composed of units (actions; states)
and their relations (either correlative or causal). This distinction we
make between behavior and symptoms is practically useful, as we
will see throughout this review; yet, in truth the two exist along a
clear continuum of human experience.

Network representation
The network perspective so relevant for psychopathology can also
be easily extended to behavior and state systems more broadly.
Indeed, theorists, especially developmental scientists, have long
considered persons as complex systems, with feelings, thoughts,
and actions that are interconnected and that change over time
[50–52]. In applications beyond mental disorders, networks
consisting of emotions, social behaviors, and other psychological
states have been created to realize this notion of persons as
complex systems. In studies of non-human animals, recent work
has focused on behavior alone, algorithmically coding extensive
video footage and separating actions into behavioral units
(network nodes) and the likelihood of transitioning between such
units (edges) [53, 54]. Collectively, such network maps underscore
the fact that domains of function are not binary or unitary. Instead,
they are composed of a collection of units whose interactions give
rise to the emergent modes of being [55].

Network perturbations
Human behavior is commonly impacted by changes in our
environment or the particular social context in which we find
ourselves [56–58]. For example, in a stressful circumstance the
probability of transitioning from dinner to a drink may be high,
whereas in a non-stressful circumstance the probability of
transitioning from dinner to a run (or a good book) may be high.
Understanding how perturbations to the environment or context
lead to predictable changes in a complex system of interacting
behavioral units could have far reaching consequences for social
policy [57], workplace standards [58], and the practices of
educational institutions [56]. Moreover, such an understanding
could inform the development of environment interventions for
patients with mental illness, consistent with recent work using
theatre improvisation training as a recovery-oriented intervention
for youths at clinical risk for psychosis [59].

SHARED MODELING NEEDS ACROSS THE THREE SYSTEMS
Across the three systems described above—brain, symptom, and
behavior—there are many shared features that could be taken
into account by models. First, all three systems are composed of
parts that can be perturbed by external factors. Second,
perturbations to one part of the system can impact neighboring
parts. Third, a system’s response to a perturbation may depend
not only on the part and its neighbors but also on the relations
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among neighbors and the broader network. When we choose a
modeling approach, we often implicitly choose which of these
three facts we will acknowledge and investigate.
Like the tree in the wind, our models range from trunk, to

trunk with roots, to the entire forest. For example, a commonly
applied form of the GLM is used to assess how external
perturbations affect the system’s part(s). An impulse response
model is used to assess how an external perturbation affects a
given part of a system and travels into the network through that
part’s connections. Finally, a network control model is used to
assess how an intrinsic or exogenous perturbation can be
designed to drive a desired network-wide response. In the
sections that follow, we describe each of these modeling
approaches, review their use in studying brain, symptom, and
behavior, and evaluate their relative strengths and weaknesses.
This discussion will allow us to move to a description of future
directions in the following section.

MODELING THE TREE AS SIMPLY A TRUNK
We will begin with one of the simplest and yet arguably most
pervasive approaches to modeling complex systems that are
perturbed by external variables. Specifically, we will consider a
commonly applied form of a GLM that is typically used to evaluate
the effect of an external variable (e.g., from the environment) on
the activity or expression of parts of a system. The underlying
assumption of this approach is that the system is composed of
parts that can be perturbed (Fig. 2). Perhaps we have measured
brain or behavior variables over time (Fig. 2a) and wish to
understand how the perturbative drives of a task’s structure affect
those variables (Fig. 2c). Or perhaps we have measured brain or
behavioral variables over persons (Fig. 2b) and wish to understand
how the perturbative drives of interventions or environmental
events affect those variables (Fig. 2d).

A rather simple form of a GLM allows us to answer these
questions in a mathematically rigorous way with appropriate
inferential statistics [60]. For a formal mathematical treatment, see
for example [61, 62]. In general, these models take the form Y=
Xβ+ ε, and in this context, Y is a vector measuring a perturbed
variable over time, X is a matrix measuring the magnitude of one
or more perturbations over time, β is a vector of coefficients that
estimate the static effect of each perturbation, and ε is a vector of
additive errors. In order to identify a unique solution to this
equation, there must be more observations (rows) than the
number of columns in X, and no two columns in X can be linearly
dependent, though regularization methods can help to overcome
this limitation [62].

Utility in neural, symptom, or behavior systems
To make knowledgeable interventions for the full human, ideally
we would understand the relations among all three systems
(brain, behavior, and symptoms) in detail. Yet, for practical
reasons, many of our empirical studies are constrained to only
one part of this multi-system organism. Here (and in the next few
sections) we will therefore consider how each system is modeled,
and return to their interdigitation towards the end of the review.
We do acknowledge, however, that fundamental progress in
neuropsychopharmacology will require us to understand how all
three systems interact with one another.

Neural system
GLMs are frequently used in the analysis of task functional
magnetic resonance imaging data to identify the neural correlates
of cognitive functions. This inference is achieved by measuring the
BOLD signal change elicited by a particular stimulus, or contrast
between stimuli [61]. Classically, one assumes that a neural event
elicits a slow increase in BOLD activity, defined by a sum of
gamma functions known as the canonical hemodynamic response

Fig. 2 Univariate or multivariate models to evaluate the effects of perturbations on system parts. a The systems that we study are often
time-varying over multiple scales. b Some systems that we study are composed of canonical trait-like variables that vary across persons,
possibly ordered by severity of condition, age, or even an identification number. How do we take these data and from them extract insight? c
We can understand the impact of task variables on systems like those displayed in panel a using several approaches including a typical form
of a general linear model. d We can also understand the impact of interventions or environmental variables on systems like those displayed in
panel b using a similar general linear model.
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function. A GLM is used to estimate the height of this increase
independently at every voxel or brain region, thus inferring the
extent to which individual regions engage in specific cognitive
processes. Although many different types of GLMs can be
specified, the most commonly used type does not assume any
interactions between the system’s parts.
The use of GLMs has helped to localize neural representations

of stimulus attributes and identify areas involved in task-general
and task-specific cognitive processes. Early work revealed that the
fusiform gyrus exhibited apparently selective activation to images
of faces. Other studies used GLMs to demonstrate activation of the
amygdala and ventromedial prefrontal cortex while processing
emotional salience of images [63]. Cognitively demanding tasks
were found to elicit deactivation of posterior cingulate and medial
prefrontal cortex with activation of dorsolateral prefrontal cortex
[64], now known as the default mode system and frontoparietal
system, respectively. These two opposing systems were subse-
quently identified from spontaneous blood oxygen level depen-
dent (BOLD) signal fluctuations observed in resting state fMRI [65],
suggesting that the signatures of task activation are etched into
the intrinsic network architecture of the brain. Interestingly, while
the default mode system is deactivated across many tasks, GLM-
based studies have also revealed that default mode activity
increases during tasks requiring autobiographical memory and
theory of mind [66]. GLMs have provided critical insights into
multiple cognitive processes, including but not limited to primary
stimulus processing, internally- and externally directed attention,
and self-referential thought.
In addition to revealing cognitive processes associated with

brain areas, GLMs have served as a foundation for the subsequent
development of more complex analytic techniques. For instance,
GLMs are so commonly used in fMRI research that publicly
available tools exist that allow for meta-analysis of more than
500,000 activation maps from over 14,000 studies [67], facilitating
additional discoveries. Early GLM studies also laid the framework
for the task fMRI protocols of large sample size studies such as the
Human Connectome Project [68] and the Philadelphia Neurode-
velopmental Cohort [69], which have subsequently revealed a
great deal about predicting individual differences in cognition
from brain activation [70–72]. Overall, GLM techniques have both
revealed important associations between cognition and brain
activation, and further motivated a rich literature on the neural
substrates of individual differences in behavior.

Symptom and behavior systems
The GLM has been the workhorse of the psychologist’s statistical
toolbox when examining how mental illness, and behavior more
generally, is impacted by changes in the environment or is
targeted during intervention efforts. Examples relevant to
neuropsychopharmacology are plentiful and include tests of the
effects of behavioral interventions designed to reduce major
depressive disorder [73], the effects of medication on nicotine
withdrawal during smoking cessation attempts [74], and the
effects of stressful life events on cognition [75]. GLM approaches
treat other symptoms and behaviors that could plausibly affect
the outcome variable of most interest as control variables. This
approach is taken to identify, as cleanly as possible, the effect of
the intervention or event of interest on the symptom or behavior
of interest, independent of other possible sources of influence.
Thus, the potentially interconnected nature of the symptoms of a
disorder or the sets of behaviors within an organism’s repertoire is
typically ignored or viewed as a nuisance to be accounted for
during statistical modeling rather than an attribute of interest.

Relative strengths and weaknesses
Restricting our attention to neural systems alone, it is worth
mentioning a few strengths and limitations of the commonly used
form of the GLM. While this model has been highly useful for

relating regional activation to cognition, it is nevertheless a mass
univariate test as applied to fMRI data. As a result, the model is
agnostic to the role of interactions between brain areas in
cognition. This common form of the GLM and other trial-averaged
measures may therefore fail to detect spatiotemporal waves of
activation by virtue of modeling each region or voxel indepen-
dently [76]. Additionally, traditional approaches for GLMs involve
the assumption that neural activity in all brain areas and all
individuals under study exhibit the same hemodynamic response
profile, which is unlikely to be the case [77–79]. Issues of
hemodynamic response variability aside, the field has continued
to debate the appropriate method for assessing statistical
significance of brain activation maps for almost two decades
since the introduction of the technique [61, 80, 81]. For clinical
use, resting state connectivity measures may indeed provide more
reliability than task fMRI and the commonly applied form of the
GLM, depending on the extent to which a lack of cognitive
engagement in certain clinical groups acts as a confound [82].
Broadening out from neural systems alone, several relative

strengths and weaknesses of the commonly used form of the GLM
are shared across systems. A shared strength is that the approach
can flexibly address univariate and multivariate processes; that is,
it can go beyond the investigation of a single part of the system to
acknowledge the fractionated, particulate, and decomposable
nature of complex systems [83]. A shared weakness of the typical
model is that it does not formally account for the embeddedness
of parts in a complex whole; in other words, perturbations are
assumed to affect the system’s parts, but not in a way that
depends systematically on neighboring parts. This limitation
motivates the use of alternative models with a greater level of
complexity. In the next section, we explore just such a model type,
the impulse response model (Fig. 3), which serves to address the
shared limitation of the typical GLM. Alternative models that we
do not describe in this review include those that assess the
statistical relationships between (i) a measure of connectivity
between two regions and (ii) a measure of symptoms or behavior.
Particularly good examples of such models include psychophy-
siological interaction, partial least squares, and canonical correla-
tion analysis [84, 85].

ACKNOWLEDGING THE TREE’S ROOT SYSTEM
Unlike the commonly used GLM just described, network models
explicitly encode the relations among a system’s parts. Network
models of brain, symptoms, and behavior provide insight into
which set of system variables contains information that improves
the prediction of another set of system variables. The models
provide information about the individual associations among
network nodes. Yet, in many applications, interest goes beyond
this edge-central representation and towards an examination of
how the system behaves as a whole. Capturing system-level
functioning necessitates a tool capable of modeling the interplay
between network units in a high-dimensional system.
Early efforts to capture such system-level notions focused on

node centrality and network density. A common measure of node
centrality is degree centrality, defined as the number of edges
emanating from a node [86]. Here we will frame our discussion
within the context of symptom systems, and broaden to other
systems later. Node centrality has been identified as a potential
index for interrogating networks to find symptoms that would
facilitate the spread of behavior through the network, activating
self-perpetuating sequences of symptoms across time [87, 88]. The
complementary notion of density is defined as the fraction of
possible edges that exist in a network. Network density has
similarly been identified as a potential index for characterizing the
likelihood that a network will support reverberating symptom
activation [89, 90]. The process is analogous to the behavior of two
sets of domino tiles: one in which the tiles are far apart and a

Modeling brain, symptom, and behavior in the winds of change
DM Lydon-Staley et al.

24

Neuropsychopharmacology (2021) 46:20 – 32



second in which the tiles are close together. In a densely
connected symptom network, when one tile falls it causes other
tiles to topple and activity ripples through the system [91]. The use
of both centrality and density are limited in their focus on direct
connections, containing little information about how symptoms
might affect each other indirectly as activity flows through the
entire network [92].
Recent efforts have turned to impulse response analysis (see ref.

[93, p. 51] for general mathematical treatment and Blaauw et al.
[94] for treatment specific to symptom and behavior networks).
Using a network model of the interactions between variables
across time, impulse response analysis involves first simulating an
instantaneous, exogenous impulse (referred to as a shock) to
certain variables in the network. Then, one charts how this
impulse propagates through the network, along the time-lagged
edges. The impulse response function shows the hypothetical
change in a variable in response to a simulated increase in one of
the other variables over a horizon of several time points. Crucially,
the activity in one node observed after a shock to another node
in the system contains system-level information. The impulse felt
by the non-shocked node is due solely to the flow of activation
along the network’s edges originally emanating from the shocked
node. In this manner, impulse response models (unlike the
commonly used form of the GLM) acknowledge the fact that a
system’s parts influence one another; moreover, that precise
influence constrains the response of the system to a perturbation.

Utility in neural, symptom, or behavior systems
Symptom and behavior systems. Despite their marked advan-
tages over simpler models, impulse response models have not yet
been used extensively in the context of behavior and symptom
systems. Notable exceptions are studies of depression [95], anxiety
[96], and tobacco dependence [97]. Here we review each in turn
before moving to a discussion of the use of impulse response
models in neural systems.
In a sample of subclinically depressed individuals, Bos et al. [95]

examined affect dynamics in daily life, and the extent to which

physical activity and experiences of stress impacted affect in
participants with anhedonic symptoms versus those without. By
completing affect, behavior, and cognition items via an electronic
diary three times a day for 30 consecutive days, participants
generated time series that were then subjected to vector
autoregression (VAR) in which each variable was regressed on
its own lagged values as well as the lagged values of the other
variables. This process resulted in, for each participant, a network
indicating the time-lagged associations between six variables:
high-arousal positive affect, low-arousal positive affect, high-
arousal negative affect, low-arousal negative affect, stress, and
physical activity. Impulse response analysis was then applied to
these VAR models to examine the impact of physical activity and
stress on affect over a horizon of ten time points. When an
increase in physical activity was simulated, the other variables only
marginally changed in response. When an increase in stress was
simulated, affect in non-anhedonic individuals showed a stronger
increase relative to affect in anhedonic individuals. These findings
ran contrary to expectations, highlighting the surprising findings
that can emerge when the flow of activity from one behavior to
another is allowed to play out in a complex, high-dimensional
system.
In the preceding example, the effect of an individual behavior

(e.g., physical activity) on an individual outcome (e.g., negative
affect) was examined. By using impulse response analysis, the
observed association between physical activity and negative affect
took into account the broader system consisting of six variables.
The effect of physical activity on negative affect consisted of the
effect of a simulated increase in physical activity filtering through
direct pathways to impact negative affect, but also via indirect
pathways emerging from the complex interplay between physical
activity and negative affect with other variables in the system (e.g.,
stress) across time. Other uses of impulse response analysis in the
literature have focused on capturing system properties occurring
at a higher level of topological analysis [1]. Using experience-
sampling data assessing six symptoms of tobacco withdrawal
(anxiety, craving, depressed mood, irritability, hunger, and

Fig. 3 Impulse response models. a (Left) A brain network encoding across-time or across-person relations between regions. (Middle) A
symptom network encoding across-time or across-person relations between symptoms. (Right) A behavior network encoding across-time or
across-person relations between cognitive, behavioral, or neuropsychological variables. b Illustration of the response of a network to an
impulse (pink). The network response is shown across the top row; the bottom plot shows the response of the stimulated node (light green)
and the response of a second node (dark green). The area under the curve is an impulse response metric.
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difficulty concentrating) in daily smokers during a 2-week smoking
cessation attempt, Lydon-Staley et al. [97] examined the effects of
cessation treatments on the reverberation of symptom activity
across time. After constructing person-specific networks indicating
the time-lagged associations between symptoms, impulse
response analysis was applied to quantify how a simulated
increase in one symptom affected other symptoms. Specifically,
the time profile of a symptom of interest following perturbation of
another symptom was simulated over 100 time steps. The time
profile was then examined to identify the recovery time of the
symptom, quantified as the number of time steps from perturba-
tion to equilibrium (see also ref. [98]). The average time taken for a
symptom to return to equilibrium after perturbation was faster in
participants in an intensive combination treatment condition
relative to participants in a matched placebo condition. Broadly,
the study demonstrates the distinct insights that an impulse
response analysis can provide on the question of how interven-
tions can differentially impact the dynamic interplay between
symptoms.
The preceding examples used self-reports of behavior, symp-

toms, and various states as network components and employed
impulse response analysis to capture the effect of a change in a
variable of interest (e.g., physical activity) on an outcome of
interest [95] (e.g., affect) or to capture the system-level notion of
hysteresis [97, 98]. In a striking example demonstrating the
flexibility of both the network approach and impulse response
analysis, Yang et al. [96] used a combination of the two to capture
adolescent emotion system dynamics. Second-by-second psycho-
physiological time series, consisting of respiratory sinus arrhyth-
mia (an indicator of parasympathetic nervous system activity [99])
and skin conductance level (an indicator of sympathetic nervous
system activity [100]), and second-by-second self-report of distress
measured using video-mediated recall were collected from 130
adolescents. In constructing a network of the time-lagged
associations embedded in this tri-node system, notions of
emotional concordance and emotion regulation were captured.
Emotional concordance is the synchronized combination of
psychophysiological, cognitive, and behavioral components of
the emotion system [101]. Emotion regulation is the ability to
produce a flexible, controlled emotional response to environ-
mental events [102]. An impulse was given to each node
separately and, for each simulation, changes in all three nodes
were tracked until activity reached equilibrium. The value of node
activity at this equilibrium level provided an index of system
reactivity. In contrast to prior studies, the approach utilized here
strongly underscores the interrelated nature of emotional states.

Neural system
Impulse response models and related techniques have also been
applied to the study of neural systems. Early fMRI studies sought
to characterize the impulse responses of primary visual cortex to
single stimuli [103, 104], without estimating an underlying
multicomponent network model. More recent studies have used
activity flow, a variant of impulse response models, to estimate
task activations from activity spread along the whole-brain resting
state functional connectome [105, 106]. Work from this group has
focused on average controllability, which quantifies the area
under the curve of the impulse response of each brain region,
using linear dynamics along structural networks obtained through
diffusion-weighted imaging [107, 108]. Average controllability of
frontolimbic regions increases with age [109, 110] is associated
with impulsivity [110], and is reduced in patients with long-
standing bipolar disorder [111]. Studying the effects of local
perturbations in nonlinear systems [112, 113] is promising due to
their ability to recapitulate oscillations characteristic of brain
signals [114]. However, a validated toolbox of regional measures
of impulse response does not exist for such systems, though one
study suggests that linear impulse response metrics may extend

to nonlinear systems [115]. These findings suggest that impulse
response metrics in neural systems capture behaviorally relevant
information that may serve as useful biomarkers and theoretical
testbeds for treatments in the future.

Relative strengths and weaknesses
Impulse response analysis provides a fitting analytic match to
theories emphasizing the spread of activity through a network of
connected components. It incorporates both the directionality and
the sign of edges during computation, allowing insight into
complex features such as positive and negative feedback loops.
This sensitivity stands in contrast to approaches that take the
absolute value of edges in brain or behavior networks before
computing the density of a system to quantify the potential for
activity spread through a network [89, 90] or those that
decompose strength into in-strength and out-strength when
identifying influential nodes [39, 116].
Alongside these strengths, a number of limitations are important

to consider. In using impulse response analysis coupled with a VAR
model, we make the assumption that the system and the
interactions among units in the system are time invariant. It is
this assumption that allows us to forecast how the system will react
to a perturbation. Time-varying VAR models may be appropriate in
cases in which system dynamics change over time [117] and would
limit the use of impulse response analysis for predicting system
activity following perturbation to periods of time where time-
invariant VAR models provide a sufficient description of system
dynamics. A related consideration associated with limiting one’s
focus to periods during which time-invariant processes may be
assumed is that densely sampled time series data are often
required to fit VAR models. Guidelines for the amount of data
required remain to be established, will depend on the size of the
system one is attempting to model, and will benefit from the
transparent reporting of when time series length emerges as a
barrier to VAR modeling (see ref. [98] for an example of such
reporting). An additional consideration concerns the system units
used to build a model upon which we simulate perturbation. The
results of simulated perturbations will differ depending on the
units we assume are relevant to a system. Yet, for even the most
intensively studied psychological disorders (e.g., major depression)
there exists substantial heterogeneity across measurement instru-
ments as to which symptoms are relevant [118]. We note that
these considerations are not specific to impulse response analysis
but to network approaches more generally.
A consideration more specific to impulse response analysis

relates to the time horizon chosen to examine system responses
to perturbation. The examples of impulse response analysis in
brain, behavior, and symptom networks described above flexibly
used several different time horizons. For example, one used a time
horizon of 10 time points following perturbation [95]; one used a
backward search to identify the time taken for the system to
return close to its starting value following perturbation [97]; and
another identified the time at which the system settled at a point
of equilibrium [96]. This difference across studies highlights the
flexibility with which impulse response analysis can be used to
capture the system responses of most interest. Yet, it also reveals a
limitation of the method: chiefly, the difficulty of incorporating
information about particular system end states that may be of
theoretical interest. In the next section, we therefore turn to a
model that addresses this limitation: namely, the network control
model (Fig. 4).

EXPANDING TO THE FOREST
Network control models stipulate how the state of a system
changes over time as a function of intrinsic dynamics and time-
varying external inputs. Note that the impulse response model is a
special case of network control models, which captures how the
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system evolves following a single initial input. Like impulse
response models, network control models define a system of N
interacting units, each of which has some measured property at
time t represented in a vector x(t). For example, the N units may
represent behavioral symptoms, neurons, or mesoscale brain
structures. The values of x(t) might therefore contain measures of
symptom intensity, firing rate, or BOLD fMRI signal, respectively.
For a formal mathematical treatment, see [119].
Distinct from the special case of impulse response models, a

generic network control model may contain time-varying external
inputs into the system represented by the vector u(t). These inputs
are filtered into the units and dimensions of x via some
transformation. The temporal progression of the system can then
be described as

�
_x(t)= f(x, u, t). This function posits that the

change in state variables
�
_x(t) is determined by some function of

the current state of the system, intrinsic interactions between the
N units, and filtered external inputs. In the case where x(t)
represents symptoms, u might represent an adverse life event,
which, when filtered by some function, has a characteristic impact
on the symptoms in x(t). In the case where x(t) represents neural
activity, u might represent the binding affinity of a drug, which
has a characteristic impact on neural activity when filtered
through spatial patterns of receptor expression. Network control
models are particularly well-suited to the study of neural,
symptom, and behavioral systems because they capture the
continuous interplay between intrinsic dynamics and the external
environment [120].

Utility in neural, symptom, or behavior systems
Neural system. Numerous studies have applied models of
network control to mesoscale [111, 121–124] and microscale

[125–127] neural systems. Due to analytical and computational
limitations in the study of nonlinear systems, most studies have
used linear, time-invariant network models [128]. The most
common form is

�
_x(t)= Ax(t)+ Bu(t), where A contains a set of

measured connections between N neural units and B is a linear
input filter. A subdomain of network control theory, known as
optimal control, allows one to solve for the external inputs u(t)
needed to drive a linear system A from a specified initial state to
some desired target state [121–123]. The literature on optimal
control is related to a sister literature on reinforcement learning
and other continuous action policy search methods [129].
Using the control framework, the latent inputs driving brain

activity across multiple cognitive tasks can be recovered
[130, 131]. Data-driven network control models have been used
to successfully decode mood fluctuations [132] and motor
patterns underlying speech [133] from implanted electrode grids
in patients with intractable epilepsy. A combination of open loop
and optimal control techniques can explain how exogenous
electrical stimulation drives the brain into activity states favorable
for episodic memory recall [123]. Patients with schizophrenia were
found to theoretically require stronger inputs to reach whole-brain
fMRI activation patterns associated with working memory
performance, while the strength of inputs required to maintain
those states varied with estimated prefrontal D1 and D2 receptor
expression [134]. Patients with chromosome 22q11.2 deletion
syndrome, which confers genetic risk for schizophrenia, were
found to spend more time in fMRI activation patterns requiring
stronger inputs to maintain [135]. These initial studies lay the
framework for merging neurotransmitter pharmacology and brain
stimulation approaches with network control models of neural
activity.

Fig. 4 Network control models. a Network control theory asks how to design interventions that move a system from one state (values on
nodes) to another state (different values on nodes), by constraining the cause of state change to occur along edges. b Interventions can be
enacted in a time-dependent manner from a single region (top) or from multiple regions (bottom). c (Left) Illustration of an energy landscape
that is dictated by the architecture of the network and that in turn encodes the fact that some transitions are easier to drive than others.
(Right) Two complementary metrics that quantify the ease of a state transition.
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Symptom and behavior systems
Mental health professionals are increasingly interested in inter-
rogating personalized behavior networks (broadly encompassing
emotions, cognitive processes, symptoms, and actions) in order to
inform treatment [136]. A proposed use of the estimated networks
is the identification of nodes that drive the behavior of other
nodes and that, thus, can be targeted early in treatment to arrive
at a desired system state [137, 138]. Methods of identifying nodes
with particularly strong downstream effects on other system
nodes include patient–provider discussions of estimated networks
to identify potential causal chains [138] and clinician examination
of edges in estimated networks to identify edges with particularly
large coefficients [137]. Nodes with relatively many and relatively
strong out-going edges (high out-strength in the parlance of
graph theory) are also thought to be important nodes for
influencing other network nodes [139].
Network control models have recently been extended to

psychological networks [140] to provide a statistical framework
capable of guiding personalized interventions. Data-driven control
models that have been applied to neural systems to explain how
exogenous stimulation drives the brain into desired activity states
[123] can be readily translated to symptom and behavior networks
to identify optimal treatment targets and to simulate the
theoretical efficacy of potential interventions. The translation of
network control models from neural systems to symptom and
behavioral networks is an important step with promising potential
to overcome the limitations of relying on visual inspection and
estimation of centrality indices of symptom and behavior
networks to guide treatment.

Relative strengths and weaknesses
The mathematical sophistication of the network control models
provides an elegant simplicity and validity in tackling the true
complexity of neural systems and behaviors. Of course, we must
always acknowledge that although more complex models may
more closely align with the complexity of the true system, they
can also hamper intuitions and be difficult to interpret as well as
fit to data. Indeed, the practical clinical utility of network control
models has yet to be realized due to this type of limitation. For
example, the functions relating the state of the system and the
inputs are often unknown in practice. In the case of neurotrans-
mitter systems, this ignorance stems from an inability to link
molecular and neuronal mechanisms with mesoscale measure-
ments of brain activity. In the case of behavioral symptoms, it is
unknown how life events reliably impact sets of symptoms over
time. Studies of network control [123, 124, 134] have gleaned
useful insights by solving for unfiltered, theoretical inputs that act
directly upon the N units of x(t). However, practical utility depends
upon the link between real interventions (i.e., pharmacologic
agents or brain stimulation) and brain state (i.e., x(t)). Data-driven
approaches may prove useful for approximating these link
functions as well as the underlying network interactions
[130, 141, 142], but they will require careful validation with large
amounts of data from single individuals before they can be used
in the clinic. Gleaning interpretable and intuitive clinical decision
support from complex models may require clinicians to have
independent expertise, likely limiting their utility to highly
specialized care settings.
From a practical point of view, the utility of network control

models depends upon the certainty with which the network itself
can be estimated, and the verity of the form of dynamics used in
the model. When using network control models in the context of
human structural brain networks, care should be taken to consider
the impact of distinct diffusion imaging sequences that differ in
their spatial resolution, scan duration, and number of diffusion
directions sampled. Similarly, when using network control models
in the context of symptom and behavior networks, formal tools to
quantify uncertainty on each of the network edges linking

symptoms (or linking behaviors) will be important. We recognize
that thorough methodological studies have yet to be done to
define clear benchmarks for the amount and type of data needed
to build accurate models to ensure a given level of confidence in
statistical inference. We look forward to future work addressing
these important issues.

FUTURE DIRECTIONS
The three modeling approaches that we have discussed here are
motivated by the overarching goal of understanding how a
network system (brain, symptom, behavior) responds to a
beneficial or maleficent perturbation (Fig. 1). How does the tree
bend in the wind? Each model type seeks that understanding by
implementing a different level of complexity in the analytical
assumptions and model formulation: the most commonly applied
form of the GLM (tree as trunk), impulse response models (tree as
trunk with roots), and network control models (forest with
interdigitated root system). Each new model advances the state
of the field by addressing the limitations of the previous model.
While the process of model development and selection continues
apace, many opportunities exist to take full advantage of the
approaches available today.
In the realm of basic science, there is one troublesome question

left open by our entire discussion. Precisely how are the three
systems interlinked with one another? How exactly does one
system impinge upon or support another? And even more: How
can such interlinkage be modeled? The pines of Kaliningrad Oblast
thrive in a broader ecosystem alongside diverse other flora. How
might the approaches that we review be extended to deal with
the presence of more than one system, with its own notion of a
part (or network node) and its own notion of a relation (or
network edge)? Might we need an entirely new approach all
together? Perhaps it could prove useful to consider canonical
correlation analysis as a means of deriving dependencies between
two systems [143, 144]. Such dependencies could be used to
develop multilayer network models of two or more systems [145],
which in turn could be studied with the principles of network
control [146]. Are such possibilities reasonable next steps? Or are
more foundational studies needed first?
In considering clinical translation, perhaps the most critical

challenge we face is understanding and parsing heterogeneity
[147]. Differences in participant, treatment, and outcome char-
acteristics challenge the development of experiments, the
collection of necessary data, and the subsequent inferences that
can be drawn. Implicit in understanding heterogeneity is under-
standing the time scales over which participant characteristics
(brain, symptom, and behavior) are trait-like versus state-like, as
this distinction can clarify whether differences are true or only
apparent. Traits are often hailed as the gold standard in clinical
medicine due to their reproducibility; that is, the fact that they
remain unchanged over iterative measurement. Yet, complex
systems typically display rich temporal dynamics in which the
reproducible feature is a dynamical rule (fit by first, second, and
sometimes even third derivatives) rather than by any single
snapshot of variable values. By requiring reproducibility of a static
measurement, rather than conscientiously seeking reproducible
dynamical trajectories through a rich state space, are we
hamstrung in truly understanding the intricacies of mental illness?
What are the appropriate time scales over which to be measuring
(and by extension modeling) these systems? And are those time
scales the same as or different from the appropriate time scales
over which to be measuring the effects of perturbations? How
would the answers to these questions change the way we model?
Beyond basic and clinical science, the methodologists might ask

whether statistical models (such as those described here) are truly
the workhorse of the future. Will statistical models eventually be
more formally complemented by machine learning approaches
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and if so, how? It is true that some machine learning models have
been criticized for lack of interpretability, and others for bias and
lack of fairness in their respective algorithms [148, 149]. Yet, it is
important to acknowledge that some computational models can
also lack interpretability. In determining the appropriate balance
between statistical models and machine learning models, it is
important to clearly state the sort of understanding the
investigator wishes to obtain. A black-box algorithm may be
superior if the question is predicting treatment outcome based on
a complex biological measure, but will do less well if the goal is to
understand the computational role a specific brain region plays in
a given behavior. Computational models also have the benefit of
being written in the same language as generalizable formal
theories, which in turn are structured in a way that humans can
naturally reason about and with. A complementarity between
statistical models and machine learning could take on several
forms. Theory-agnostic algorithms may prove useful for making a
first reasonable estimate of appropriate model parameters, or
perhaps for determining which parts of a many-part system must
be included in the model to canvas the space of possible
dynamics appropriately. Future work is likely to better formalize
the types of interdigitation between algorithm and model that
may best advance the science toward our collective goals.
A key consideration in linking theory, modeling, and experiment

is the utilization of an appropriate framework for causal inference
[150]. Our discussion has focused on studying and discovering the
effect of an intervention in a complex system. This effort can quite
naturally lend itself to the identification of causes and mechan-
isms. The three methods we cover differ in their explicit account of
causality. For example, the particular form of GLMs that we discuss
seeks to measure the statistical variance in system function that is
explained by a perturbation. This approach can provide evidence
in support of a causal theory [151], but does not itself comprise a
causal framework. In contrast, impulse response models and
network control models apply an artificial perturbation in silico to
predict the effects of a natural perturbation in vivo. Two causal
frameworks that appear particularly relevant to these models are
that of mechanisms and that of pathways [152, 153]. Future work
bridging empirical science, theoretical science, and philosophy of
science could seek to clarify particularly fruitful points of
interdigitation between perturbative models and causal frame-
works. Moreover, such efforts could delineate best practices in
causal inference from observational studies with particularly
abundant data versus from clinical studies with less data and
carefully designed interventions.
Finally, it is worth posing the question of whether computa-

tional models are the end goal, or whether they are a humble
stepping stone to a larger goal. In considering this question, we
are faced with the fundamental differences and relations between
modeling and theory. What we truly seek is understanding, and
computational models (along with their associated analytical
approaches) are useful tools with which to gain understanding.
But a model is not the understanding itself. Models can instantiate
theories, and understanding arises when theories are tested, and
either proven or disproven. An important future direction, then, is
to define the theories behind the models, and use the models in a
more directed way to prove or disprove specific theories.

CONCLUSION
Together, our goal is to understand how, when, and where to
intervene to divert mental illness and drive mental health.
Frankly, we are reaching for the stars. While the stars may still be
beyond our reach, we may attain some altitude by taking a path
through the Dancing Forest, and acknowledging how the wind
bends the trees. Recent advances in modeling the relations
between perturbations and system function lay the groundwork
for us to better understand how brain, symptom, and behavior

systems respond to exogenous changes both in health and
disease.

CITATION DIVERSITY STATEMENT
Recent work in several fields of science has identified a bias in
citation practices such that papers from women and other
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choosing references that reflect the diversity of the field in
thought, form of contribution, gender, and other factors. We
obtained predicted gender of the first and last author of each
reference by using databases that store the probability of a name
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excluding self-citations to the first and last authors of our current
paper), our references contain 12% woman(first)/woman(last),
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unknown categorization. This method is limited in that (a) names,
pronouns, and social media profiles used to construct the
databases may not, in every case, be indicative of gender identity
and (b) it cannot account for intersex, non-binary, or transgender
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better understand how to support equitable practices in science.
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