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Essential to human cognition is the ability to group stimuli into 
meaningful identities. The emergence of such identities is 
accompanied by the development of a mapping that is encoded 

in the activity patterns of neural circuitry1. Exactly how new infor-
mation about objects is mapped into the correct groups, such that 
relevant information becomes associated, is not completely under-
stood. Furthermore, it is not generally known how far apart such 
groups should be and what kind of space efficiently embeds such 
a mapping. These concepts and questions are reminiscent of stud-
ies of coding efficiency in neural responses to low-level sensory 
stimuli2,3—a notion quantifying a system’s information processing 
given biophysical and metabolic constraints. An open question is 
whether similar principles of efficiency play a role in higher-level 
processes such as cognition4. What goals and constraints must be 
balanced to enable such cognitive coding efficiency5–7? And how 
might such efficiency support accurate perceptions and decisions?

To formalize intuitive notions of space and organization in neu-
ral activity during the building of such mental maps, we use a geo-
metric perspective adapted from machine learning8,9. Specifically, 
we represent distributed neural responses as points in a multidi-
mensional space. Applied to neuron-level data, such representations 
have been shown to be very effective in isolating an intrinsic low-
dimensional subspace relevant to ongoing cognitive processes8,10,11. 
In this study, we extend these tools to the examination of large-scale 
neural responses in humans as they integrate information across 
many areas to form representations of novel objects, appreciate the 
abstract properties of those objects12, and both prepare and execute 
associated motor responses9. Despite our growing understanding of 
the regions activated by such learning12, a notable gap in knowledge  

lies in delineating how spatial patterns of neural responses in 
these activated regions allow for effective behavioral choices. Our 
approach complements multivoxel pattern analysis and related 
techniques, which enable a local quantification of regional repre-
sentations of objects or concepts9, by offering tools that synthesize 
information across all brain regions simultaneously.

Fundamentally, these tools allow us to hypothesize that the 
dimension of a geometric representation of neural responses is 
related to the effective identification of stimuli and correspond-
ing learned values. The simple intuition behind this hypothesis 
is that a higher dimension allows for an easier grouping of neural 
responses according to different objects in the geometric space. 
To test this hypothesis, we examine blood oxygen level-dependent 
(BOLD) magnitudes at the regional and voxel levels, in a cohort of 
20 healthy adult humans as they learn the values of 12 novel objects 
over the course of 4 consecutive days for a total of 80 experimen-
tal imaging sessions. Motivated by a desire to study parsimonious 
representations and also by recent work decoding object identity13, 
stimulus response14 and markers of emotional and affective process-
ing15 from coarse-scale measurements across the brain, we spatially 
average these indirect measurements of neural activity in 83 regions 
of interest (ROIs) defined by a whole-brain anatomical parcella-
tion. Next, we use a generalized linear model (GLM) to deconvolve 
the hemodynamic response function to obtain approximate neu-
ral responses to each stimulus at the time point when it was pre-
sented. We ask how the dimension of the geometric representation 
of such neural responses reflects the speed with which participants 
learn the objects’ monetary values16. To answer this question, we 
study three aspects of the geometric organization of these neural 
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responses: the stimulus dimension; the embedding dimension; and 
label assortativity.

We demonstrate that fast learners have higher dimensional 
stimulus representations, allowing for an easier development of 
boundaries between neural responses to different stimuli. However, 
a potential disadvantage of using a high-dimensional representation 
is that the brain might use more resources to embed the informa-
tion. To assess the presence or absence of this potential trade-off, 
we study the embedding dimension: the geometric representation 
of each individual’s neural responses, with the map between stimu-
lus and neural response shuffled uniformly at random. We find that 
the embedding dimension of a fast learner is more compact than 
that of a slow learner, suggesting that their neural responses form a 
more contained underlying subspace within the higher dimensional 
ROI space. The large ratio between the stimulus and the embed-
ding dimensions is indicative of efficient coding and is observed 
most commonly in individuals who learned rapidly. To enhance 
our understanding of the anatomy driving these observations, we 
identify brain regions that most contribute to the emergence of 
high-dimensional patterns in quick learners; we further implement 
a voxel-level analysis to examine a finer-scale structure in neural 
responses. Lastly, we use the complementary metric of label assor-
tativity to characterize the distinguishability of neural responses. 
Confirming our prior results, we find that fast learners have more 
distinguishable neural responses than slow learners. Taken together, 
our approach provides an insight into the geometry of neural 
responses supporting learning and offers a suite of computational 
heuristics to intuitively describe cognitive processes more generally.

Results
Quick learners develop higher dimensional stimulus representa-
tions of neural responses. We sought to understand how the neural 
responses of individuals are distributed according to task-relevant 
stimuli and how this distribution reflects their learning ability. 
The dimensionality of the functional magnetic resonance imaging 
(fMRI) BOLD evoked responses (Fig. 1a,b) can be estimated based 
on the performance of a linear classifier in distinguishing assigned 
binary labels on the data8. Intuitively, a given spatial arrangement of 
these responses will make it easier for any of the stimuli to be dis-
tinguished from the others, when the data are arranged in a higher 
dimensional manner. Specifically, for n stimuli there are 2n ways to 
assign binary labels to these stimuli. When the data are arranged 
in a low-dimensional manner, some binary assignments will result 
in poorer separability, whereas in a higher dimension, these binary 
assignments will result in higher separability on average (see 
Fig. 1c). By exhaustively examining all 2n − 2 choices of binary label-
ing and by recording the resulting separability, the average perfor-
mance over this combinatorial number of assignments yields the 
separability dimension of stimulus representation.

We applied this method and assortativity (see Fig.  1d) to the 
evoked neural responses of participants learning the value of 12 
shapes (see Fig. 2a; ref. 16). Each shape was assigned a distinct mean 
monetary value. Learning phases and a value judgment task were 
repeated daily for 4 d (see Fig. 2b). As the sessions progressed, par-
ticipants improved in their abilities to select the shape with the 
higher expected value. By the conclusion of the second day of prac-
tice, all participants reached a generally high level of performance 
(see Fig. 2b). During the learning phase, participants were shown a 
pair of shapes simultaneously and asked to select which shape had 
the higher value, after which they received feedback based on their 
response (see Fig. 2c). This portion of the experiment was followed 
by a value judgment task, where participants were shown individual 
shapes and asked to indicate if the shape was one of the six least or 
six most valuable shapes (see Fig. 2d).

We sought to explore how the geometric representation of each 
individual’s neural responses is related to their learning effectiveness.  

To obtain this geometric representation, we used data from the 
value judgment task when shapes were presented one at a time and 
we applied a GLM to obtain the neural response to each shape (see 
Fig. 1b) for every ROI. For each shape, the neural responses across 
all regions contribute a point in the ROI space. Hence, 140 shape 
presentations in one session jointly form a point cloud or geomet-
ric representation (see Fig.  3a), whose dimension we quantified. 
However, for n = 12, calculating the 2n − 2 binary assignments is 
computationally expensive. Thus, in practice we chose a subset of 
m = 4 stimuli over which to calculate this separability dimension. 
To ensure that our results did not depend on the particular sub-
set of stimuli chosen, we repeated the calculation on 20 different 
combinations (roughly 7%) out of the ( )n

m  available choices, while 

ensuring that each shape was represented a roughly equal num-
ber of times throughout these sets. As a measure of an individual’s 
learning effectiveness, we used their response accuracy from each of 
these daily value judgment sessions.

We found that individuals with a higher than average dimen-
sion of their neural representation also exhibit higher than aver-
age learning accuracies, using a multilevel model to analyze the 
behavior and neural data across all days (P < 0.043; see Methods 
and Supplementary Table  1). To better understand this effect, we 
assessed the correlation among behavioral accuracy scores across 
participants, averaged across days (mean r = 0.58, s.d. of the 
mean = 0.03). This high correlation indicates that individuals who 
display higher accuracy than average on the first day, also tend 
to display higher accuracy than average on the other 3 d. We also 
assessed the correlation in separability dimension across partici-
pants, averaged across days, and found that they were highly vari-
able (mean r = −0.02, s.d. of the mean = 0.10). This low correlation 
suggests that values of separability dimension varied appreciably 
over time within an individual during the learning experiment. 
Hence, we next treated the behavioral accuracy scores as repeated 
measures and sought to understand whether they could better pre-
dict an individual’s separability dimension earlier versus later in the 
experiment. We found evidence for an approximately linear increase 
in the correlation between an individual’s behavioral accuracy and 
their separability dimension each day, as we moved from day 1 to 
day 4 (see Supplementary Fig. 1). This result suggests that the neural 
representations on day 4 most strongly reflect the effects of learning.

To simplify the presentation of the results, we used a single day’s 
behavioral accuracy as the predictor for the separability dimension 
on day 4. We chose day 1 for two reasons. First, we theoretically 
hypothesized that the effectiveness of early learning would predict 
the crystallization of neural representations in the future. Second, 
the behavioral accuracy scores on day 1 were characterized by 
the greatest variance to skewness ratio, indicating significant and 
homogeneous variability across participants (furthest from the 
performance ceiling)—unlike later days when behavioral accuracy 
became more skewed, tending to be high and similar in value across 
most participants with a few outliers displaying low accuracy. With 
this simplification, we found that the response accuracy of partici-
pants on the first day was significantly correlated with their separa-
bility dimension on the last day (Pearson’s correlation, r = 0.56 and 
P < 0.001; see Fig. 3b). The statistical significance of this relation-
ship was assessed using a null model permuting the object labels 
of the neural responses uniformly at random and calculating the 
separability dimension of these permuted data. Across participants, 
we calculated the correlation between their response accuracy and 
the dimension of these null data in 1,000 bootstrapped samples 
(gold bars in Fig.  3c). We observed that the true stimulus-based 
data fell significantly outside this distribution, with non-parametric 
P < 0.001. This finding suggests that participants who learn more 
quickly display a larger stimulus separability dimension of their 
representations, which allows for easier distinguishability between 
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stimuli associated with different values. Following this exploratory 
analysis, we further examined the separability dimension of neural 
responses from the other days and we verified that this correlation 
is strongest with data from the final day (see Supplementary Fig. 2). 
This suggests that these higher dimensional representations emerge 
most clearly over time and the course of the experiment. This result 
also survives multiple hypothesis testing for data from all 4 d.

Quick learners have a lower embedding dimension and hence 
overall more efficient representations. Intuitively, a high-dimen-
sional response per  se (independent of its coding information) 
provides flexibility in coding for stimuli but naturally uses more 
resources and has more potential to be distorted by errors. In 
contrast, a low-dimensional response per  se uses fewer resources 
and has less potential for distortion in the encoding process. How 
might quick learners potentially balance these two competing fac-
tors—the use of minimal resources to encode information while 
ensuring that the encoding is maximally informative of relevant 
stimuli—to develop efficient neural responses? To address this 
question, we extended our calculations across a range of values of m,  
the cardinality of the subset of shapes from which the dimension 
is estimated. We calculated the correlation between separability 
dimension and response accuracy for the true stimulus-based data 
and for the null data in 100 bootstrapped samples, up to m = 11 (see 
Fig. 3d and Methods). First, we noticed that the true data were con-
sistently positively correlated (red points) and fell far outside the 
error bars of the null data (gold points), confirming that, across a 
range of m, the true data reflect quick learners having a higher stim-
ulus dimension of their representations. In fact, the results at large 

m are particularly instructive since the combinatorics of 2m − 2 aver-
aged over for each calculation lead to a strong convergence of the 
results, as reflected in small error bars. Lastly, we noted that while 
the positive correlation between stimulus dimension and learning 
accuracy holds over a range of m values, m = 4 provides the stron-
gest signal and is relatively computationally feasible to calculate in 
large quantities; further investigations into the stimulus dimension 
were done with m = 4.

Across participants, we further observed that the correlation 
between separability dimension and learning accuracy is nega-
tive in the null data, particularly for large m values (see Fig. 3d). 
Intuitively, these data are the geometric distribution of neural 
responses per se, independent of stimulus information, and thus 
reflect the embedding space of neural activity during the task. 
Therefore, we refer to the separability dimension of these null 
data as the embedding dimension. Surprisingly, the negative 
correlation between participants’ learning accuracy and embed-
ding dimension shows that fast learners have a lower embedding 
dimension, complementing their higher stimulus dimension. 
This large stimulus to embedding dimension ratio for fast learn-
ers suggests an efficient cognitive coding: the use of a smaller 
amount of embedding resources from which a more informative 
set of task-relevant features can be constructed. We provide a low-
dimensional schematic comparing such geometric arrangements 
in Fig. 3e. While the use of efficiency as a construct in cognitive 
science has been debated4, in this study we provide a mathematical 
definition that contrasts the coding for meaningful content with 
the neural activity involved per se, via the ratio between stimulus 
and embedding dimensions.
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Fig. 1 | Neural responses from the fMRI data: separability dimension and assortativity. a, We measured regional fMRI BOLD activation over 1 h of task 
practice. b, Using a GLM to deconvolve the hemodynamic response function from the BOLD time series, we obtained the approximate neural responses, 
βi, to each stimulus at the time point when it was presented. c, We assigned binary labels (denoted by color) to the neural data (denoted by shapes). 
When data are arranged in a low-dimensional manner (top row), some binary assignments result in poorer separability, whereas in a higher dimension 
these binary assignments can be more easily separated. The average performance of separability over different possible binary assignments gives 
the separability dimension. When applied to the neural responses to each shape, this procedure yields the dimension of the stimulus representation, 
where the x and y axes denote an ROI measurement space. 1C, one-dimensional; 2D, two-dimensional. d, Label assortativity does not depend strictly on 
dimension and can measure a different geometric aspect of the same data. In c and d, the dashed lines represent a classifier boundary, while the question 
marks illustrate the difficulty of finding a clean boundary.
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Quick learners show high-dimensional stimulus representations 
within local brain regions. To better understand the main effects 
reported in the previous sections, we first sought to determine 
which regions contribute most to the higher stimulus dimension 
observed in quick learners. To address this question, we conducted 
a virtual lesioning analysis where we removed brain regions one at a 
time; then, we recalculated the separability dimension of the modi-
fied representation. The regions whose absence caused the largest 
change in the observed correlation between separability dimension 
and response accuracy across participants were the left hippocam-
pus and right temporal pole, respectively (magnitude of z-score > 2 
or P < 0.023, uncorrected; see Fig.  4). A possible explanation for 
these results is that learning to perform this task requires effective 
separability of stimulus dimensions mediated by these regions. Such 
an interpretation is in line with the known role of the hippocampus 
in the rapid learning of stimulus associations17, and the role of the 
temporal pole in representing information about abstract concep-
tual properties of objects (such as object value)18.

Up to this point, we have studied neural activity across the whole 
brain and the separability dimension of such neural activity. It is 
natural to ask if this relationship between learning ability and the 
dimension of neural responses can also be found in the multivoxel 
patterns of single brain regions hypothesized to be relevant for task 
performance. To address this question, we adapted our approach to 
examine 10 ROIs composed of 300 (or fewer) voxels (see Methods 
and Table  1). Following the prior analyses, we examined the  

correlation between separability dimension in the neural data in 
each local region and the participants’ learning accuracy. Overall, we 
noted that none of the regions show a negative correlation between 
their separability dimension and learning accuracy. Moreover, we 
found that three regions showed a significant positive correlation, 
greater in magnitude than expected in the null model of shuffled 
data (non-parametric P ≤ 0.05; see Fig. 5): the left anterior cingulate 
(ACC) and primary visual cortices, as well as the right posterior 
fusiform cortex. We noted that only the non-parametric test for the 
left ACC displayed P ≤ 0.05 after correcting for multiple compari-
sons. Notably, the ACC is thought to play a role in reward-based 
learning19, while the V1 areas of the visual cortex and the posterior 
fusiform cortex are involved in the representation of lower- and 
higher-level features of objects, respectively20. Therefore, our find-
ings suggest that these regions are comparatively more engaged in 
the creation of a value-related heuristic at a local level.

Quick learners develop more assortative representations. Besides 
separability dimension, a complementary geometric measure is that 
of label assortativity, which simply identifies how easily distinguish-
able neural responses are from each other according to all labels, 
not just according to binarized labels. While data that are more 
assortative are typically also higher dimensional, it is also possible 
for these metrics to vary independently (see Fig. 1d). Data can be 
arranged in a high- or low-dimensional manner but still be eas-
ily classifiable (Fig. 1d, left) or data can be arranged in a high- or 
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low-dimensional manner but be difficult to classify (Fig. 1d, right). 
Hence, the analysis of both metrics provides distinct and potentially 
independent information regarding the organization of the data. 
We hypothesized that quick learners would show a more assortative 
representation, in addition to having a higher stimulus dimension 
(see Fig. 6a). In the current study, we calculated assortativity using a 
linear support vector machine (SVM), chosen because of its simple 

interpretability. When examining the same neural data from the 
value judgment session at the end of the fourth day, we found a posi-
tive correlation between assortativity and the response accuracy of 
participants on the first day (r = 0.55, non-parametric P = 0.012 esti-
mated from a null model where labels are randomly permuted; see 
Fig. 6b). Intuitively, these data suggest that participants who learn 
more quickly have a more assortative pattern of neural responses 
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left hippocampus and right temporal pole, respectively, caused the largest decreases in the observed correlation. In other words, in individuals that learn 
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than participants who learn less quickly. To verify that the metrics 
of separability dimension and label assortativity do not have a strict 
overlap, we noted that one metric explains approximately r2 = 34% 
of the variance of the other metric, where r is Pearson’s correlation.

Discussion
In this study, we developed and applied a computational framework 
to reveal how the high-dimensional neural responses of quick learn-
ers allow for greater distinguishability of meaningful stimuli while 
requiring fewer informational resources. Our observations were 
enabled by emerging methods from machine learning and data sci-
ence8,9, which can be used to estimate the intrinsic dimension of a 
representation despite pervasive measurement noise. We extended 
the metric of the stimulus dimension8 to study a complex cogni-
tive task in whole-brain neural data; we also introduced the new 
idea of the embedding dimension. In a cohort of 20 healthy adult 
humans learning the value of new objects over the course of 4 d, 
we found that participants who learn most quickly display uniquely 
optimized neural responses to encode the cognitive processes asso-
ciated with the task. The joint profile of the stimulus and embed-
ding dimensions allows us to quantify a concept of cognitive coding 
efficiency, based on the ratio between these two dimensions for 
each individual. We complemented this examination with support-
ing studies of finer neuroanatomy (assessing multivoxel patterns) 
and computation (assessing local assortativity). Broadly, our work 
provides a suite of tools to characterize response geometry, thereby 
offering a simple and intuitive explanation for how individuals learn 
to successfully distinguish between relevant stimuli in their envi-
ronment over time.

A notion of cognitive coding efficiency. The concept of coding 
efficiency has been exercised at smaller spatial scales to characterize 
the (often unexpectedly low) dimension of neural representations. 
For example, neuronal spiking patterns measured in the lateral 
intraparietal area as macaques engage in a visual spatial attention 
task map onto a one-dimensional dynamical trajectory10. The sim-
plicity and low-dimensionality of these dynamics mark disparate 
cognitive processes from decision-making and attentional shift-
ing, to biased representations that arise from associative learning11. 
Indeed, such low-dimensionality is almost ubiquitous in neuronal 
measurements21, although this often saturates the low-dimensional 
bound set by the limited complexity of neural tasks commonly used 
today22, or their autocorrelation structure23. Within this low-dimen-
sional manifold, temporal variation in this ‘effective’ dimension of 
neural activity can also indicate temporal variation in behavior24.  

For example, as macaques engage in a recall task, the estimated 
stimulus dimension from neural spiking activity in the pre-
frontal cortex is higher during correct responses than during  
incorrect responses8.

Extending previous methods, we introduced two complementary 
types of dimension (stimulus and embedding) that allow insight 
into learning capacity and cognitive flexibility. Our results are con-
sistent with the notion that the substantially different use of these 
two types of dimension allows the efficient encoding of contextually 
relevant data, potentially supporting optimal learning strategies. 
The compression of a large amount of information or content into 
a restricted number of channels has been studied in other cognitive 
domains such as sensory processing2,3. In light of these historical 
contributions, our results suggest that similar principles of geomet-
ric efficiency may extend to higher-order cognitive processes in 
humans. Further work could directly investigate commonalities in 
such principles across different scales of space and time. Such an 
investigation is in principle made possible by the fact that while the 
absolute value of these geometric metrics depends on the particular 
measurement technique, relative changes in value could be used to 
compare between data collected across wholly different measure-
ment techniques.

Complex cognitive tasks require new models of cognitive coding 
efficiency. Recent theoretical studies have used biologically plau-
sible models to demonstrate that complex tasks such as image rec-
ognition or sensory processing are supported by high- dimensional 
representations, which in turn allow for an accurate readout of stim-
ulus identity25. These and other theoretical developments show that 
the two types of dimension (stimulus and embedding dimensions) 
may have very different advantages and behavior, even within the 
same experiment or within the same neural network26. An efficient 
balance between these two types of dimension may control a gen-
eralization–discrimination trade-off25; new models accounting for 
these two dimensions are necessary especially for the fundamental 
understanding of complex cognitive tasks. In a separate line of work, 
the concept of efficiency has been applied to large-scale human 
neuroimaging data, predominantly to describe situations where 
the behavior of participants appears similar but neural activation is 
greater for one group (taken to be the ‘less efficient’ group) than for 
the other6,7. For instance, in an experiment involving working mem-
ory, less neural activity was needed for trained items compared to 
new ones27. The authors interpreted this difference as a correlate of 
a gain in neural efficiency, and that training causes a more efficient 
neural representation. However, it has been pointed out that this 
interpretation does not shed light on the relationship between these 
two facts4. In our study, we show that a more compact dimension of 
neural activation is simultaneously tied to larger information con-
tent in the same neural activation, leading to the idea of efficiency 
in the representation itself. This notion is more akin to how the 
concept of efficiency is used in other contexts in the neuroscience 
literature, such as in studies of efficient coding in sensory systems2,3 
or in studies of network efficiency28,29, where a maximal amount of 
information is conveyed through a fixed (or smaller) feature or basis 
set. That the efficient cognitive coding we observed also appears dif-
ferentially in individuals who learn faster is consistent and intuitive, 
but is not in itself required for our definition of efficiency. Hence, 
our calculations of the dimension of representation provide a rigor-
ous framework for quantifying and reasoning about the efficiency 
of cognitive coding, which can be measured and compared in other 
cognitive processes.

In our experiment, participants were presented with a set of 
shapes designed to have no visual features that correlated with their 
monetary value (see Methods). Each participant was required to 
flexibly reassign new values to these shapes through the course of 
the experiment. In general, humans can be guided to act according 

Table 1 | Brain regions where a higher dimensional 
representation is correlated with learning ability.

No. of voxels Brain region Hemisphere r P

300 ACC Left 0.543 0.003*

300 ACC Right 0.306 0.063

300 Primary visual cortex Left 0.500 0.016

300 Primary visual cortex Right 0.090 0.390

300 Posterior fusiform cortex Left 0.085 0.396

300 Posterior fusiform cortex Right 0.608 0.050

300 Lateral occipital cortex Left 0.415 0.092

300 Lateral occipital cortex Right 0.0591 0.465

140 Orbitofrontal cortex Left 0.142 0.291

140 Orbitofrontal cortex Right 0.357 0.103

The r and non-parametric P values are given from comparison with the null model. The left ACC 
passes the non-parametric P < 0.005 threshold corrected for multiple comparisons (marked with 
an asterisk).
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to what has been previously reinforced or to move toward promising 
sources of future reward30. Our work examines the neural basis that 
supports this flexible identification of new value to existing objects, 
and how such objects become distinguished from each other in the 
representation of neural activity according to stimulus cues. Indeed, 
on investigating data from sessions where participants were asked 
to evaluate the size and not the value of each shape, fast learners 
showed no particular difference in the dimension of their neural 
responses (see Fig. 7). Our results complement previous investiga-
tions into the relevance of cognitive flexibility for effective learning31 
and the underlying processes of executive function32,33, while illumi-
nating the emergent geometric architecture of the neural responses 
of effective learners. Future work could determine whether efficient 
geometric representations arise in individuals who exhibit higher 
degrees of cognitive flexibility and dynamic reorganization of their 
neural responses.

Changes in neural representations during learning and prac-
tice. In seeking to decipher the rules of adaptation, learning 
and development, it is common to examine how neural mecha-
nisms support or foster behavioral patterns. In a complementary  

perspective, one can examine how temporally localized decisions 
or short-term behaviors can drive adaptation or change in neural 
circuitry. Indeed, developmental systems theory has long viewed 
behavior as the leading edge of adaptation34. From this perspec-
tive, behavior serves an integrative function, inducing changes in 
intraorganismic activity (encompassing brain structure and func-
tion) in response to changes in extraorganismal activity (encom-
passing the environment within which the individual is situated). 
Crucially, the timescale of change differs across levels of analysis 
such that the various systems (for example, behavior, brain) are 
differentially open for change over different periods of time. It is 
in response to persistent (rather than transient) behavior change 
that activity within other systems eventually becomes aligned 
with behavior by virtue of bidirectional activity across the levels 
of analysis. This perspective is also supported by computational 
modeling studies using deep networks, which show that network 
weights continue to change long after the networks demonstrate 
low thresholds of learning errors35,36. Indeed, after learning errors 
have reduced to a regime where the deep networks are perform-
ing accurately, it is common practice to continue updating and 
changing the weights as the representations continue to improve 
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(in compression and generalization), even after the learning errors 
have stopped decreasing.

Such artificial neural network models are consistent with obser-
vations in human neuroscience, where different phases in adapta-
tion across multiple timescales are observed. Fast improvements 
tend to be seen during the early phase of learning; slower improve-
ments when automaticity develops are observed in a later phase of 
learning37. The corresponding changes in neural representations 
outlast a training session and can be observed up to months or a 
year later37. Some notable studies identified changes in fMRI mea-
surements of brain activity following video game playing, which 
were associated with improvements in visuospatial and attention-
related skills38, as well as in the rate of regional subcortical glucose 
metabolism39. Changes from tasks involving spatial navigation and 
visuomotor coordination have also been identified in structural 
brain properties, with the effects outlasting even a short intensive 
gaming period40. In our study, as participants learned to associ-
ate rewards of different magnitudes with novel stimuli, it is likely 
that new neural representations would emerge over days to rep-
resent these distinct groups. The emergence of structured neural 
representations over long (rather than short) timescales is partic-
ularly expected in tasks whose stimuli have complex similarities 
and differences41 or multiple layers of content42, where recurrent 
retrieval might foster variability in the representations in early 
learning caused by the altering or adding of underlying memory 
representations, thereby leading to more effective memories in 
the future43. Additional early modulators of later neural repre-
sentations include consolidation41, insight44 and the nature of the  
learning environment45.

Role of single regions within a broader whole-brain geometry. 
Geometry and topology can be investigated across multiple scales of 
any complex system or its emergent dynamics. While some systems 
can display heterogeneity in geometric principles across spatial and 
temporal scales, others display greater scale invariance, with the 
principles at one scale being recapitulated at other scales. Applying 
our methods at different scales, we found that neural activity  

patterns elicited by value judgments of learned stimuli display simi-
lar geometric principles whether assessed at the level of the whole 
brain, or at the level of multivoxel patterns in single brain areas. 
Our choice to begin with an analysis of ROIs across the whole brain 
complements prior studies that often focused on fine-grained voxel 
patterns, and captures global organization that would be relevant 
during value learning. On a smaller scale, we found that the left 
primary visual cortex, ACC and right posterior fusiform cortex of 
quick learners display a differential increase in dimension. While 
we focused on just ten local regions, each of which are hypothe-
sized to play an important role in the cognitive processes elicited by 
this task, it would be of interest to expand the study to additional 
regions or sets of regions defined with other methods. Then, using 
the computational techniques we have introduced, one could begin 
to bridge the regional drivers of whole-brain simplicity and com-
plexity in response geometry.

Methodological considerations. Several methodological consid-
erations are pertinent to our study. First, while the GLM extracts 
neural responses from the time series averaged across entire 
regions, it could also be useful to perform this extraction on time 
series at the voxel level before averaging; this may decrease the 
noise from irrelevant signals. Second, dimension and assortativity 
constitute starting points for a deeper analysis and further work 
could identify the exact topology of the response. Third, the broad 
geometric methods that we developed and used in this study could 
be complemented by a dynamic study to assess how this geometry 
evolves across time. Fourth, while our cohort of 20 individuals 
already demonstrate significant evidence for geometric features 
that distinguish quick from slow learners, these results could well 
be verified across larger samples. Fifth, in our work, we found a 
significantly higher stimulus dimension in the neural responses of 
quick learners on the last day (see Supplementary Figs. 1–3), sug-
gesting that this higher dimensional and more efficient represen-
tation emerges most clearly over time and training. However, our 
results remain correlative and cannot suggest a causal link between 
this high-dimensional representation and effective learning. Sixth, 
our results can be replicated using a different whole-brain parcel-
lation (Supplementary Fig. 4), alternative measures of differences 
in stimulus representation (Supplementary Fig. 5) and behavioral 
metric (Supplementary Fig. 6), as well as cross-validation data par-
tition (Supplementary Fig.  7). Finally, we studied a single cogni-
tive task; future work could extend these notions to other cognitive 
domains during different experiments, or as different cognitive 
processes are engaged. In a previous experiment examining recall 
performance in trained macaques, the two estimates of dimension 
and decoding accuracy (analogous to assortativity) were differen-
tially related to behavior8. Specifically, while the stimulus dimen-
sion of the macaque’s neural representation was predictive of the 
macaque’s performance, the decoding accuracy of the same neu-
ral data instead remained constant in both error and correct trials. 
These observations raise fundamental questions about whether dif-
ferent cognitive processes can exhibit typified geometric changes in 
neural responses. In humans, a particularly interesting context in 
which to study such differences is the mental states engendered by 
‘explore’ versus ‘exploit’ behaviors common in general human expe-
rience, which are thought to give rise to diffuse versus structured 
neural representations.

Conclusion. In the current study, we offer a computational frame-
work for quantifying and understanding the geometry of neural 
responses in humans. The tools we have developed and exercised 
hold promise for the analysis of other complex cognitive tasks due to 
their general applicability to non-invasive neuroimaging and notable 
robustness to noise. We illustrate the utility of these tools in charac-
terizing the organization of neural activity associated with effective 
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cognitive performance and efficient cognitive coding during the 
learning of abstract values associated with novel objects. Our results 
suggest that effective learners are marked by a type of cognitive  
coding efficiency characterized by high-dimensional geometric rep-
resentations in concert with a compact embedding of the stimulus 
information. Our observations motivate future work in cognitive 
and clinical neuroscience examining the generalizability of this 
notion of efficiency and its relevance for disease.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41593-019-0400-9.
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Methods
Dimension estimation. Given several types of data such as the shapes in Fig. 1c 
and given that there can be several measurements for the same shape, we can 
assign a binary label to each shape, represented by the color. In our case, each shape 
represents a neural response to one of n stimuli. Given n stimuli or shapes, there 
are 2n ways to assign binary labels to these data. We can then ask how separable 
these binary groups are across all 2n − 2 relabelings8. Note that the additional −2 
is because 2 cases out of the 2n assign the same label to all of the data; thus, it is 
clearly unnecessary to calculate separability in those cases. When the data are 
arranged in one dimension, it becomes hard to separate the binary groups in all 
but one of the binary assignments. When the data are in a higher dimension, it 
is easier to separate these binary groups. Hence, the average binary separability 
over different assignments estimates the separability dimension of this geometric 
representation of the data, that is, a higher value indicates that the data effectively 
live in a larger dimensional space.

All simulations were performed in MATLAB (MathWorks). Each calculation of 
linear separability was cross-validated across partitions of the data. Specifically, to 
calculate linear separability on the binary categories, we used the default validation 
scheme within the Classification Learner application, retaining the default option 
of fivefold cross-validation. This algorithm partitions the data into five disjoint 
sets or folds, chosen randomly but with roughly equal size. For each fold, the 
algorithm trains a linear SVM using the out-of-fold observations and then assesses 
model performance using infold data. Next, the average test error is calculated over 
all folds to yield the separability for each binary assignment, which is a number 
between 0 and 1 (with the chance level being 1/2). We repeated this process over all 
binary assignments to obtain the separability in each case, and we took the average 
separability over all 2n − 2 assignments for n types of data (or object identities). 
An advantage of this process of averaging over many separating hyperplanes is 
a robustness of the results to noise; while the result in any particular hyperplane 
might be sensitive to perturbation, the average result will be stable.

The resulting average is the separability dimension, which has a monotonic 
relation with the cardinal dimension. Separability dimension is hence a useful 
proxy for cardinal dimension and is sufficient to show relative differences between 
individuals, which was the purpose of our study. Note that the cardinal dimension, 
which is more intuitively familiar and ≥1, could be inferred by counting Nc, the 
number of successful binary assignments above a threshold, and relating that to the 
cardinal dimension d using d = log2Nc (ref. 8). However, the number of data points 
needed to extrapolate this cardinal dimension (approximately 4,000 in  
Rigotti et al.8) exceeds the amount of measured data available from typical 
experiments, and this number increases with task complexity. Hence,  
estimating the cardinal dimension often requires the introduction of additional 
data resampling techniques, which we chose not to use.

We performed this analysis on m subsets of the stimuli. That is, for m stimuli 
out of the 12 there are ( )m

12  ways to assign binary labels. We chose 20 draws out of 
the different possible combinations in a uniform way, such that each stimulus is 
represented a similar number of times. This can be done for m = 2,…, 10, where 

>( )m
12 20; for m = 11 we used all 12 possible draws. To preserve statistical rigor 

we did not study m = 12 since there would be only one draw for m = 12. For most 
calculations, we chose to use m = 4 as a midsize subset due to computational 
tractability, except in Fig. 3c where we show results for all m < 12 to verify that the 
conclusions remain similar.

Linear SVM and cross-validation. In calculating binary separability, the 
MATLAB linear SVM is used with cross-validation by partitioning the data in 
five folds. For each fold, a model was trained using the out-of-fold observations, 
after which model performance was assessed using infold data. The average test 
error is calculated over all folds to provide an estimate of the predictive accuracy 
of the final model and is used as the measure of binary separability. A similar 
cross-validation procedure is used to calculate label assortativity. In this case the 
MATLAB linear SVM is also used with the data retaining all n = 12 distinct labels.

Effects of noise on the measure of dimensionality. This method is robust to 
generic noise that artificially enlarges the dimension of the data in all directions. 
This is because of the cross-validation approach that uses different samples for 
training and testing where the realization of the noise is different. This is the 
typical problem that a readout in the brain has to solve. The representational 
variance is not consistent across repetitions of the same trial; hence, the geometry 
of the set of points is not inherently different from the noiseless case. Note that 
this would not be true for a simple application of principal component analysis. 
However, a low signal-to-noise ratio, or when noise is large along the relevant 
directions, will cause a collapse of dimensionality8 or the ability to distinguish 
between different objects. This situation is interesting and illustrates cases where a 
readout in the brain will be unable to resolve object identity. Indeed, we expect that 
the cognitive state of an individual (modulated by attention or perception) plays a 
significant role in the dimensionality of the ensuing representations. As with other 
measures that consider the broad geometric or topological properties of neural 
data8,49,50, such findings would be well complemented by finer-scale experiments 
into the link between physiological state and altered neural representations.

Value learning experiment. Participants. Twenty participants (9 female; ages 19–
53 years; mean age = 26.7 years) with normal or corrected vision and no history of 
neurological disease or psychiatric disorders were recruited for this experiment. No 
statistical methods were used to predetermine sample sizes; however, our sample 
sizes are similar to those reported in previous publications7,9,16. All participants 
volunteered and provided informed consent in writing in accordance with the 
guidelines of the Institutional Review Board of the University of Pennsylvania 
(no. 801929). Participants had no prior experience with the stimuli or with the 
behavioral paradigm. Notably, there were no specific conditions in our experiment, 
except for the condition of the day of practice. However, it is impossible for human 
experimenters to be ignorant of the day; thus, data collection and analysis were not 
performed blind to the conditions of the experiment.

Stimulus design. The novel stimuli were three-dimensional shapes generated with 
a custom-built MATLAB toolbox (http://github.com/saarela/ShapeToolbox) 
and rendered with RADIANCE51. ShapeToolbox allows the generation of three-
dimensional radial frequency patterns by modulating basis shapes, such as spheres, 
with an arbitrary combination of sinusoidal modulations in different frequencies, 
phases, amplitudes and orientations. A large number of shapes were generated 
by selecting combinations of parameters at random. From this set, we selected 
12 that were considered to be sufficiently distinct from one another. A different 
monetary value, varying from US$1.00 to US$12.00 in integer steps, was assigned 
to each shape (Fig. 2a). These values were uncorrelated with any parameter of the 
sinusoidal modulations, so that visual features were not informative of value.

Experimental paradigm. Participants learned the monetary value of 12 novel 
visual stimuli over the course of 4 consecutive days16. Each day included the 
following phases: (1) a size judgment task; (2) a learning phase; (3) a repetition of 
the size judgment task; (4) a value judgment task. A 10-minute resting-state session 
preceded the experiments on each day. In the main text, we report data only from 
the value judgment task.

Learning phase. On each trial of the experiment, participants were presented with 
two shapes side by side on the screen and asked to choose the shape with the 
higher monetary value in an effort to maximize the total amount of money in their 
bank. Feedback (explicit or implicit) was given based on their response (Fig. 2b). 
The shape values on a given trial were independently drawn from a Gaussian 
distribution with the mean equal to the true monetary value and the s.d. = US$0.50 
(Fig. 2a). This variation in the trial-specific value of a shape was incorporated to 
ensure that participants thought about the shapes as having worth, as opposed to 
simply associating a number or label with each shape. The average accuracy in 
selecting the shape with the highest mean value at each trial gradually improved 
over the course of the experiment, increasing from approximately 50% (chance) in 
the first few trials to approximately 95% in the final few trials.

Value judgment task. The value judgment task scans consisted of consecutive 
presentations of shapes drawn from the set (1,500 ms presentation and 250 ms 
interstimulus interval) as participants indicated whether the shape was one of the 
six least or six most valuable shapes. No feedback was given in this task.

We analyze the data from the value judgment scans (both the BOLD data and 
participants’ response accuracy) in the main text of the paper. We focus specifically 
on these data because the presentation of single stimuli in these sessions allows 
for the isolation of neural responses to each shape, which would be harder to 
disentangle from the simultaneous presentation of two shapes characteristic of 
the task used in the learning sessions. The fMRI time series were poorly recorded 
for one participant in the value judgment session of the first day, due to a lack 
of synchronization between computer and scanner. Hence, this participant was 
excluded from the analyses, with the other 19 participants contributing data for the 
main analyses described in this article.

The behavioral data reported in the main text is the accuracy in this task 
(specifically, the accuracy at the end of the first day), while the neural data reported 
in the main text is measured from this task (specifically, based on day 4).

Size judgment task. The size judgment task scans consisted of consecutive 
presentations of shapes drawn from the set and presented with a ±10% size 
modulation (1,500 ms presentation and 250 ms interstimulus interval) as 
participants indicated whether the shape was presented in a slightly larger or 
smaller variation.

Image acquisition. We collected BOLD fMRI data from each participant as they 
performed the task.

Learning phase. A total of 12 scan runs over 4 d were completed by each person (3 
scans per session), totaling 1,584 trials (Fig. 2c). Participants completed 20 min of 
the main task protocol on each scan session, learning the values of the 12 shapes 
through feedback. The sessions consisted of three scans of 6.6 min each, starting 
with 16.5 s of a blank gray screen, followed by 132 experimental trials (2.75 s each), 
and ending with another period of 16.5 s of a blank gray screen. Stimuli were back-
projected onto a screen viewed by the participant through a mirror mounted on 

Nature Neuroscience | www.nature.com/natureneuroscience

http://github.com/saarela/ShapeToolbox
http://www.nature.com/natureneuroscience


ArticlesNATuRe NeuROscIence

the head coil and subtended 4 degrees of visual angle, with 10 degrees separating 
the center of the two shapes. Each presentation lasted 2.5 s (250 ms interstimulus 
interval) and, at any point within a trial, participants entered their responses on a 
4-button response pad indicating their shape selection with a leftmost or rightmost 
button press. Stimuli were presented in a pseudorandom sequence with every pair 
of shapes presented once per scan.

Value and size judgment tasks. A total of 4 scan runs over 4 d were completed by 
each person (one scan per session) for the value judgment task, while a total of 
8 scan runs over 4 d were completed by each person (two scans per session) for 
the size judgment tasks. Each scan lasted 5 min and 22 s (184 trials). Stimuli were 
back-projected onto a screen viewed by the participant through a mirror mounted 
on the head coil and subtended 4 degrees of visual angle. Each presentation lasted 
1.75 s (250 ms interstimulus interval); at any point within a trial, participants 
entered their responses on a four-button response pad indicating their shape 
selection with a leftmost (least valuable) or rightmost (most valuable) button press, 
during the value judgment tasks. During the size judgment task, these leftmost and 
rightmost button presses corresponded to smaller and larger shapes, respectively. 
Stimuli were presented in a counterbalanced sequence.

MRI data collection and preprocessing. MRI images were obtained at the 
Hospital of the University of Pennsylvania using a Siemens Tim Trio 3.0T MRI 
scanner equipped with a 32-channel head coil. T1-weighted structural images of 
the whole brain were acquired on the first scan session using a three-dimensional 
magnetization-prepared rapid acquisition gradient echo pulse sequence (repetition 
time (TR) 1,620 ms; echo time (TE) 3.09 ms; inversion time 950 ms; voxel size 
1 × 1 × 1 mm; matrix size 190 × 263 × 165). A field map was also acquired at each 
scan session (TR 1,200 ms; TE1 4.06 ms; TE2 6.52 ms; flip angle 60°; voxel size 
3.4 × 3.4 × 4.0 mm; field of view 220 mm; matrix size 64 × 64 × 52) to correct 
geometric distortion caused by magnetic field inhomogeneity. In all experimental 
runs with a behavioral task, T2*-weighted images sensitive to BOLD contrasts 
were acquired using a slice-accelerated multiband echo-planar pulse sequence 
(TR 2,000 ms; TE 25 ms; flip angle 60°; voxel size 1.5 × 1.5 × 1.5 mm; field of view 
192 mm; matrix size 128 × 128 × 80).

In all resting-state runs, T2*-weighted images sensitive to BOLD contrasts  
were acquired using a slice-accelerated multiband echo-planar pulse sequence  
(TR 500 ms; TE 30 ms; flip angle 30°; voxel size 3.0 × 3.0 × 3.0 mm; field of view 
192 mm; matrix size 64 × 64 × 48).

Cortical reconstruction and volumetric segmentation of the structural data 
was performed with the FreeSurfer Software Suite (version 5.3)52. Boundary-based 
registration between the structural and mean functional images was performed with 
FreeSurfer bbregister53. Preprocessing of the resting-state fMRI data was carried out 
using FEAT (fMRI Expert Analysis Tool) v.6.00, part of the FMRIB Software Library 
v.6.0 (https://www.fmrib.ox.ac.uk/fsl). The following pre-statistics processing was 
applied: echo-planar imaging distortion correction using FUGUE54; motion correction 
using MCFLIRT55 ; slice-timing correction using Fourier-space time series phase-
shifting; non-brain removal using BET56; grandmean intensity normalization of the 
entire four-dimensional dataset by a single multiplicative factor; high-pass temporal 
filtering (Gaussian-weighted least-squares straight line fitting, with σ = 50.0 s).

Nuisance time series were regressed voxelwise from the preprocessed data. 
Nuisance regressors included: (1) three translation (X, Y, Z) and three rotation 
(pitch, yaw, roll) time series derived by retrospective head motion correction 
(R = (X, Y, Z, pitch, yaw, roll)), together with expansion terms ((R,R2,Rt−1,Rt−1)), 
for a total of 24 motion regressors57; (2) the first 5 principal components of non-
neural sources of noise, estimated by averaging signals within white matter and 
cerebrospinal fluid masks, obtained with the FreeSurfer segmentation tools and 
removed using the anatomical CompCor method (aCompCor)58; and (3) an 
estimate of a local source of noise, estimated by averaging signals derived from 
the white matter region located within a 15 mm radius from each voxel, using 
the ANATICOR method59. The global signal was not regressed out of the voxel 
time series60–62. Instead, we followed recent guidelines by removing the local white 
matter signal and other non-neural sources63,64.

GLM to extract stimulus responses from BOLD time series. From the BOLD 
time series of 0.5 Hz, we interpolated the data to obtain a time series corresponding 
to the frequency of presentation of stimuli during the value judgment session  
(at 1.75 s intervals). We then used a GLM to obtain the static responses to each 
of these stimuli, βi, for 184 stimuli in each sequence (see Fig. 1b). This procedure 
is repeated from each ROI, such that each stimulus has a βi from each of the 83 
ROIs. Hence, each stimulus can be embedded as a point in the 83-dimensional ROI 
space. From here we kept the results for the first 140 stimuli shown in each session 
out of all 184 stimuli, which jointly form a 140-point data cloud or geometric 
representation in this ROI space (see Fig. 3a). This choice to truncate the data past 
140 trials was dictated by the fact that MRI acquisition does not continue past the 
length of the hemodynamic response for several of the last stimuli, thus providing 
inadequate data for GLM decoding.

Whole-brain parcellation. For the whole-brain analyses, we subdivided 
participants’ gray matter volume into 83 cortical and subcortical areas in  

both hemispheres, based on regions assigned from the Lausanne atlas65. For a 
replication of our results on a different whole-brain parcellation, please see the 
Supplementary Information.

Voxel-level study of brain regions and virtual lesioning approach. We 
examined ten brain regions: posterior fusiform cortex, ACC, orbitofrontal cortex, 
lateral occipital cortex and primary visual cortex, each from the left and right 
hemispheres. We used the group-constrained subject-specific method to define 
the regions66. For each region, a large parcel is defined based on an existing 
parcellation67, within which a maximum of 300 voxels with highest object versus 
scrambled t-statistic contrast from an independent localizer were selected. For the 
lateral occipital and posterior fusiform cortices, the parcels were downloaded from 
https://web.mit.edu/bcs/nklab/GSS.shtml. This procedure allowed the selection of 
ROIs that exhibited univariate responses to objects in a participant-specific manner.

We conducted an exploratory analysis using a virtual lesioning approach 
where we removed brain regions one at a time and then recalculated the 
separability dimension of the modified representation. In the current study, 
we report the regions whose absence causes the largest change in the observed 
correlation between separability dimension and response accuracy across 
participants (magnitude of z-score > 2 or P < 0.023, uncorrected). Since this is 
a ranking procedure where regions contribute the most, we simply report the 
regions with the largest deviation from the distribution of contributions from 
each region67. This analysis does not lend itself to a correction for multiple 
comparisons and is commonly used in examining which brain regions most 
strongly drive a particular effect68–70.

Statistics. In general, and throughout the main text, we used Pearson’s correlation 
coefficients to assess the relationships between two variables. To evaluate the 
statistical significance of these coefficients, we used non-parametric statistical 
tests rather than assuming or testing for normality. This choice was motivated 
by the fact that the sample size is such that we are underpowered to make strong 
claims about normality. The one exception to this non-parametric approach was 
our use of a multilevel statistical model to assess whether the average dimension of 
neural representations was related to average learning accuracies. We describe this 
approach in greater detail in the next section; additional details can be found in the 
accompanying Nature Research Reporting Summary.

Multilevel statistical model. A multilevel model framework was adopted 
to accommodate the nested nature of the intensive repeated measures data 
(4 occasions nested within 19 persons). Repeated measures data contain 
information on both within-person and between-person information that must 
be disaggregated appropriately to make both within-person and between-person 
inferences71. This disaggregation was achieved by parameterizing the separability 
dimension variable into time-invariant (between-person) and time-varying 
(within-person) versions of the separability dimension variable. We calculated 
a time-invariant, between-person variable of usual separability dimension as 
the grand mean-centered individual mean score of the separability dimension, 
respectively, across all days in the study. Participants with positive values on this 
between-person variable had greater than usual levels of separability dimension 
throughout the study compared with other participants in the sample. Participants 
with negative values on this variable had lower levels of separability dimension. 
We calculated a time-varying, within-person version of the separability dimension 
variable as deviations from the between-person mean; thus, zero on this within-
person variable indicated days of usual levels of separability dimension, negative 
values indicated days of fewer than usual levels of separability dimension and 
positive values indicated days of more than usual levels of separability dimension 
for each individual.

At level 1 (day-level variables), we constructed the following formal model 
equation (equation (1)):

β β
β β

= +
+ + + e

Accuracy Day’s Separability Dimension
Linear Time Quadratic Time

(1)it i i it

i it t it it

0 1

2 3

where Accuracyit is accuracy for person i on day t; β0i indicates the expected 
accuracy on day 1; β1i indicates within-person differences in accuracy associated 
with differences in the day’s separability dimension; β2i and β3i test for linear and 
quadratic slopes of time, respectively; and eit are day-specific residuals that are 
allowed to be autocorrelated (AR(1)).

Person-specific intercepts and associations (from level 1) are specified (at level 2)  
in equations (2–5) as:

β γ γ= + + uUsualDimension (2)i i0 00 01 0

β γ= + u (3)i1 10 1

β γ= (4)2 20
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β γ= (5)3 30

where γ denotes a sample-level parameter and u denotes residual between-person 
differences that may be correlated, but are uncorrelated with eit. Parameter γ01 
indicates how between-person differences in the usual level of brain separability 
across the 4 d was associated with the usual level of accuracy. The multilevel model 
was fitted with the ‘nlme’ package in R using maximum likelihood estimation; 
incomplete data were treated using assumptions of being missing at random. 
Statistical significance was evaluated at α = 0.05.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are available from 
the corresponding author upon reasonable request. The code used for the statistical 
analysis and modeling has been provided as Supplementary Software.
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Data collection Cortical reconstruction and volumetric segmentation of the structural data was performed with the Freesurfer image analysis suite. 
Boundary-Based Registration between the structural image and the mean functional image was performed with Freesurfer bbregister. 
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Data analysis Simulations were performed in Matlab_R2018b (MathWorks). To calculate linear separability on the binary categories, we used the 
default validation scheme within the Classification Learner application, retaining the default option of 5-fold cross-validation. This 
algorithm partitions the data into 5 disjoint sets or folds, chosen randomly but with roughly equal size. For each fold, the algorithms 
trains a linear SVM using the out-of-fold observations, and then assesses model performance using in-fold data. Next, the average test 
error is calculated over all folds, to yield the separability for each binary assignment, which is a number between 0 and 1. We repeat this 
process over all binary assignments to obtain the separability in each case, and take the average separability over all assignments for n 
types of data (or object identities). The resulting average is the separability dimension. 
 
In the multilevel model, a subject's learning accuracy forms the independent variable.  This model was fit with nlme in R version 3.5.1 
using maximum likelihood estimation, and incomplete data was treated using assumptions of being missing at random. Statistical 
significance was evaluated at α = 0.05.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Twenty human participants with normal or corrected vision and no history of neurological disease or psychiatric disorders were recruited for 
this experiment. No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in 
previous publications (see Methods). All participants volunteered and provided informed consent in writing in accordance with the guidelines 
of the Institutional Review Board of the University of Pennsylvania (IRB #801929).

Data exclusions In the value judgement session of the first day for one participant, the fMRI time series was poorly recorded due to a lack of synchronization 
between the computer and scanner. Hence this participant was excluded from the analyses, with the other 19 subjects contributing data for 
the main analyses described in this paper. This exclusion criteria on the grounds of poor data quality was pre-established.

Replication The study was conducted over twenty human participants for statistical and comparison purposes. No further replication of the experiment 
was performed, however extensive replication of the analysis was conducted with different modeling choices that confirmed our findings.

Randomization Participants were randomly assigned to two groups determining the type of feedback that they would receive, however this assignment is not 
relevant to our study where we treated data from all participants equally.

Blinding Blinding is not relevant to our study as we treat data from all participants equally.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Twenty human participants (nine female; ages 19-53years; mean age = 26.7 years) with normal or corrected vision and no 
history of neurological disease or psychiatric disorders were recruited for this experiment.

Recruitment Participants were recruited from the departmental participant pool and advertisements in the community. All participants 
volunteered and provided informed consent in writing. Participants had no prior experience with the stimuli or with the 
behavioral paradigm.
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Ethics oversight  Institutional Review Board of the University of Pennsylvania (IRB #801929)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Subjects learned the monetary value of 12 novel visual stimuli over the course of four consecutive days. Each day 
comprised of the following phases: (i) a size judgment task; (ii) a learning phase; (iii) a repetition of the size judgment 
task; (iv) a value judgment task. A 10-minutes resting-state session preceded the experiments on each day.

Design specifications Learning phase: A total of 12 scan runs over 4 days were completed by each person (three scans per session), totaling 
1584 trials. The sessions were comprised of three scans of 6.6 minutes each, starting with 16.5 seconds of a blank gray 
screen, followed by 132 experimental trials (2.75 seconds each), and ending with another period of 16.5 seconds of a 
blank gray screen. Each presentation lasted 2.5 seconds (250 ms inter-stimulus interval). 
Value judgement and size judgement tasks: A total of 4 scan runs over 4 days were completed by each person (one scan 
per session) for the value judgement task, while a total of 8 scan runs over 4 days were completed by each person (two 
scans per session) for the size judgement tasks. Each scan lasted 5 minutes and 22 seconds (184 trials). Stimuli were 
back-projected onto a screen viewed by the participant through a mirror mounted on the head coil and sub-tended 4 
degrees of visual angle. Each presentation lasted 1.75 seconds (250 ms inter-stimulus interval).

Behavioral performance measures Learning phase: At any point within a trial, participants entered their responses on a 4-button response pad indicating 
their shape selection with a leftmost or rightmost button press. The average accuracy in selecting the shape with the 
highest mean value at each trial gradually improved over the course of the experiment, increasing from approximately 
50% (chance) in the first few trials to approximately 95% in the final few trials. 
Value and size judgement tasks: At any point within a trial, participants entered their responses on a 4-button response 
pad indicating their shape selection with a leftmost (least valuable) or rightmost (most valuable) button press, during 
the value judgement tasks. During the size judgement tasks, these leftmost and rightmost but- ton presses 
corresponded to smaller and larger shapes respectively.

Acquisition

Imaging type(s) Blood oxygen level dependent (BOLD) functional MRI data was collected from each participant as they performed the 
task.

Field strength 3.0 T

Sequence & imaging parameters T1-weighted structural images of the whole brain were acquired on the first scan session using a three-dimensional 
magnetization-prepared rapid acquisition gradient echo pulse sequence (repetition time (TR) 1620 ms; echo time (TE) 
3.09 ms; inversion time 950 ms; voxel size 1 mm X 1 mm X 1 mm; matrix size 190 X 263 X 165). A field map was also 
acquired at each scan session (TR 1200 ms; TE1 4.06 ms; TE2 6.52 ms; flip angle 60 degrees; voxel size 3.4 mm X 3.4 mm 
X 4.0 mm; field of view 220 mm; matrix size 64 X 64 X 52) to correct geometric distortion caused by magnetic field 
inhomogeneity. In all experimental runs with a behavioral task, T2*-weighted images sensitive to blood oxygenation 
level-dependent contrasts were acquired using a slice accelerated multi-band echo planar pulse sequence (TR 2,000 ms; 
TE 25ms; flip angle 60 degrees; voxel size 1.5 mm X 1.5 mm X 1.5mm; field of view 192 mm; matrix size 128 X 128 X 80).

Area of acquisition A whole brain scan was used.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Cortical reconstruction and volumetric segmentation of the structural data was performed with the Freesurfer image 
analysis suite. Boundary-Based Registration between the structural image and the mean functional image was 
performed with Freesurfer bbregister. Preprocessing of the resting state fMRI data was carried out using FEAT (FMRI 
Expert Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-
statistics processing was applied: EPI distortion correction using FUGUE; motion correction using MCFLIRT; slice-timing 
correction using Fourier-space time series phase-shifting; non-brain removal using BET; highpass temporal filtering 
(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s).

Normalization Grand-mean intensity normalization of the entire 4D dataset by was done with a single multiplicative factor.

Normalization template MNI152

Noise and artifact removal Nuisance time series were voxelwise regressed from the preprocessed data. Nuisance regressors included (i) three 
translation (X; Y;Z) and three rotation (pitch; yaw; roll) time series derived by retrospective head motion correction (R = 
[X; Y;Z; pitch; yaw; roll]), together with expansion terms ([R,R2,Rt-1,R2t-1]), for a total of 24 motion regressors); (ii) the 
first five principal components of non-neural sources of noise, estimated by averaging signals within white matter and 
cerebrospinal fluid masks, obtained with Freesurfer segmentation tools and removed using the anatomical CompCor 
method (aCompCor); and (iii) an estimate of a local source of noise, estimated by averaging signals derived from the 
white matter region located within a 15 mm radius from each voxel, using the ANATICOR method. Global signal was not 
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regressed out of voxel time series. Instead, we follow recent guidelines by removing local white-matter signal and other 
non-neural sources.

Volume censoring No volume censoring was performed.

Statistical modeling & inference

Model type and settings We used data science methods (linear classifiers) for analysis, as well as non-parametric permutation tests, a multilevel 
statistical model and an ANOCOVA test to test the global findings.

Effect(s) tested Linear separability of the neural data according to stimuli labels were calculated and the statistical significance of 
individual variability in the results; no factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

We use the Group-Constrained Subject-Specific (GSS) method for defining the regions. For each region, a 
large parcel is defined based on an existing parcellation, within which a maximum of 300 voxels with 
highest object-versus-scrambled t-statistic contrast from an independent localizer were selected. For 
lateral occipital and posterior fusiform, the parcels were down-loaded from http://web.mit.edu/bcs/
nklab/GSS.shtml). These are described in Methods.

Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise and cluster-wise inference was not used.

Correction Permutation tests were used for non-parametric statistical testing, and multiple comparisons was used to evaluate the 
resulting p-values where there were multiple regions or days considered. 

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Simulations were performed in Matlab (MathWorks). To calculate linear separability on the binary 
categories, we used the default validation scheme within the Classification Learner application, retaining 
the default option of 5-fold cross-validation. This algorithm partitions the data into 5 disjoint sets or folds, 
chosen randomly but with roughly equal size. For each fold, the algorithms trains a linear SVM using the 
out-of-fold observations, and then assesses model performance using in-fold data. Next, the average test 
error is calculated over all folds, to yield the separability for each binary assignment, which is a number 
between 0 and 1. We repeat this process over all binary assignments to obtain the separability in each 
case, and take the average separability over all assignments for n types of data (or object identities). The 
resulting average is the separability dimension. 
 
In the multilevel model, a subject's learning accuracy forms the independent variable.  This model was fit 
with nlme in R using maximum likelihood estimation, and incomplete data was treated using assumptions 
of being missing at random. Statistical significance was evaluated at α = 0.05.


