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Introduction

Adolescence is a transitional period in human development when an individual is no 
longer considered a child but has not yet achieved full adult status in society (Dahl, 
2004). This “in‐between” quality of adolescence can be observed across several 
domains. For example, changes in hormone levels contribute to a pubertal growth 
spurt (typically around 12 for girls, 13.5 for boys) during which many adolescents 
experience an asynchronous development of different bodily parts: the growth of the 
arms and legs often outpaces that of the trunk. In the realm of psychosocial 
development, adolescents also demonstrate “in‐betweeness” in terms of a progressive 
maturation over time in their sense of identity, autonomy, sexuality, morality, and so 
on, which makes them think, feel, and interact with their world sometimes like adults, 
sometimes not. For example, many adolescents spend increasingly more time in the 
presence of their peers as they grow older and gain a sense of adult‐like independence 
about the choices they make in their romantic life and the way they spend their leisure 
time, yet they remain dependent on their parents financially.

The transitional nature of adolescence also plays out in terms of brain development. 
Differential rates of neural maturation have been observed in reward‐ or motivation‐
related and executive control‐related brain regions (Steinberg, 2004; Casey, Jones, & 
Somerville, 2011). Dopamine‐rich limbic regions supporting behavioral motivation 
and reward processing reach heightened levels of functioning around puberty, earlier 
than prefrontal cortical regions, which support cognitive (inhibitory) control and 
continue to mature into the third decade of life (Gogtay et al., 2004). This is consid
ered to result in an imbalance in motivation versus control and underlies an increased 
vulnerability for risky decisions and behaviors (e.g., Spear, 2010). That is, while 
adolescents experience heightened motivation to pursue high sensation and novel 
rewards, their capacity to internally regulate these drives is limited or inconsistent by 
comparison to that of adults. Importantly, context matters in terms of risky decision 
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making, as adolescents appear more influenced than younger and older individuals by 
rewards that are salient or novel, immediately available, and oftentimes associated 
with peer approval.

In some instances, adolescents’ risk‐tasking tendencies may result in positive out
comes. Indeed, several authors suggest potential adaptive benefits, including the 
promotion of exploration of novel environments and social interactions (e.g., Spear, 
2010). However, in other contexts risky behavior (e.g., accepting a car ride from an 
intoxicated friend, engaging in unprotected sex, experimenting with drugs) can lead 
to dangerous or even deadly outcomes (accidents, sexually transmitted disease, addic
tion). Consequences of risky behaviors during adolescence are the leading preventable 
causes of morbidity and mortality in this age group and, as such, are a major focus of 
prevention and intervention efforts.

In this chapter we focus on a particular kind of risky behavior: cigarette smoking. 
Cigarette smoking is a leading cause of disease and death worldwide (American Cancer 
Society, 2010) and, while smoking rates have declined since the mid‐1990s, nearly 
20% of adults in the United States still identify as daily smokers (Agaku, King, & 
Dube, 2014). Consequently, research into the antecedents and consequences of 
cigarette smoking remains a major public‐health imperative. Importantly, the age at 
which one initiates smoking appears to be strongly related to continued smoking into 
adulthood, the majority of adult daily smokers initiating before the age of 18 (US 
Department of Health and Human Services, 2012). Adolescents initiate cigarette 
smoking at disproportionately high rates, despite widespread knowledge of its health‐
compromising and long‐term consequences. Psychosocial factors clearly play a role in 
adolescent smoking initiation, but determining the role of the developing adolescent 
brain in this deleterious behavior has only recently received attention.

In the sections that follow we start by briefly highlighting findings from structural 
and functional imaging studies of normative brain development as a means to better 
understand how/why the adolescent brain may be susceptible to risk taking in a gen
eral sense. In this regard, we take a developmental cognitive neuroscience perspective 
and consider several key decision‐related brain systems during adolescence, including 
reward processing and cognitive control. Next we consider how smoking may have a 
unique profile of effects on adolescents by comparison to older users that may ulti
mately contribute to continued use. As part of this analysis, we highlight contributions 
from functional imaging studies to our understanding of adolescent smoking. Finally, 
we consider ways in which our understanding of adolescent brain development and 
sensitivity to nicotine may help inform smoking prevention and intervention efforts.

Adolescent Brain Development

Structural changes in the adolescent brain have been well documented in a number of 
reviews (Lenroot & Giedd, 2006; Giedd & Rapoport, 2010). While the gross physical 
appearance of the brain during adolescence is similar to that of adults in terms of its 
overall size, weight, and gyrification (Caviness, Kennedy, Richelme, Rademacher, & 
Filipek, 1996; Giedd et al., 1996), significant changes continue to occur during this 
period of development. Longitudinal magnetic resonance imaging (MRI) studies 
have demonstrated that gray‐matter (GM) volume peaks in late childhood before 
undergoing progressive thinning through adolescence and into young adulthood 
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(Gogtay et al., 2004). While a reduction in GM likely reflects several microstructural 
events, a key process is synaptic pruning – the loss of underused synaptic boutons bet
ween neurons. Pruning is thought to enhance information processing within localized 
brain regions by increasing the speed and specificity of communication between neu
rons. Synaptic pruning provides a mechanism by which the brain can change itself so 
as to fit optimally in its environment (Andersen, 2003; Luna, Garver, Urban, Lazar, & 
Sweeney, 2004).

From a developmental perspective, a key finding from longitudinal MRI studies is 
that GM changes are not uniform across the entire brain; this confirms and extends 
earlier post‐mortem histological work (e.g., Huttenlocher & Dabholkar, 1997). 
Instead regional variability exists, as primary sensory and motor cortices thin (or 
mature) earlier than regions of higher order association – like the prefrontal and 
temporal cortices, which progress along more protracted trajectories, into the twenties. 
Moreover, subcortical structures, including the ventral striatum (VS), also show 
continued maturation (GM thinning) throughout adolescence (Sowell, Thompson, 
Holmes, Jernigan, & Toga, 1999). In line with the imbalance model of adolescent 
risk‐taking, which posits an earlier maturation of subcortical regions such as the amyg
dala and nucleus accumbens than of prefrontal regions, the majority of individuals 
in a recent longitudinal study demonstrated an earlier maturation of the amygdala 
and/or nucleus accumbens than of the prefrontal cortex (Mills, Goddings, Clasen, 
Giedd, & Blakemore, 2014). This variability in rates of brain development has impor
tant implications for our understanding of brain–behavior relationships. Given that 
specific regions of the cortex support distinct neural computations and that behavior 
is supported by networks of brain regions acting together, differential maturation 
across the brain may result in overall network function and behavior that is mature in 
some regards yet immature in others.

Structural MRI studies have also observed changes in white matter (WM) 
throughout the adolescent period. Linear increases in WM volume and density have 
been observed throughout childhood and adolescence, peaking in middle age (Giedd, 
2008; Paus et al., 1999). The increase in WM volume is thought to be associated with 
myelination, a process that aids the functional integration of widely distributed 
circuitry (see Luna, Padmanabhan, & O’Hearn, 2010 for discussion), although 
alternative explanations have been suggested, including changes in axonal caliber 
(Paus, Keshavan, & Giedd, 2008).

The development of magnetic resonance techniques, such as diffusion tensor 
imaging (DTI; Basser & Jones, 2002), have allowed even greater insight into the 
development of WM during adolescence. DTI is sensitive to the properties of the 
diffusion of water molecules and, due to the interaction of water molecules with tissue 
structures, information can be gained about brain structure development. More spe
cifically, fractional anisotropy (FA) values – a quantification of the extent to which the 
diffusion of water molecules in the brain displays anisotropic properties (water mole
cules located in fiber tracts are more likely to be anisotropic than water molecules in 
the rest of the brain and diffuse in parallel to a tract of myelinated axons) – is a 
common metric used in DTI studies that provides information on the structural 
integrity of WM. Results of DTI studies indicate increased FA throughout adoles
cence in brain areas associated with important cognitive functions such as memory 
and attention (Barnea‐Goraly et al., 2005; Hasan et al., 2008). The increases occur 
predominantly in frontal brain regions (for a review, see Schmithorst & Yuan, 2010) 
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and are positively associated with cognitive functioning, including working memory 
(Nagy, Westerberg, & Klingberg, 2004) and information processing (Mabbott, 
Noseworthy, Bouffet, Laughlin, & Rockel, 2006).

Given these changes in WM, the adolescent brain, still undergoing the process of 
myelination, may not be as efficient or rapid in executing cognitive functions or in effi
ciently integrating the many signals associated with incentive processing (Watanabe & 
Sakagami, 2007; Grace, Floresco, Goto, & Lodge, 2007). In terms of the dynamics 
between reward and control brain regions, the maturation of frontostriatal WM struc
tures, still continuing through adolescence, may also contribute to an increased capacity 
for cognitive control as individuals develop into adulthood (Liston et al., 2006).

Additional work has extended these findings on structural development to pro
vide insight into sex differences. The consideration of sex differences in research on 
adolescent risk taking is critical, given the different rates of risk taking across the sexes 
during this developmental period in general (Byrnes, Miller, & Schafer, 1999), but 
also on account of sex differences that are present throughout all phases of drug abuse 
(see Becker & Hu, 2008 for review). In terms of cigarette smoking, sex differences in 
the age of smoking initiation have been observed across a range of studies, adolescent 
males demonstrating a lower age of initiation than adolescent females (for review see 
Okoli, Greaves, & Fagyas, 2013). While the mechanisms underlying sex differences 
in smoking behavior are complex and involve factors across many levels of analysis, 
sex differences in the structural development of reward and cognitive‐control brain 
regions during adolescence are a key component for understanding these behavioral 
differences.

The most consistent sexual dimorphism in brain structure is a difference in total 
brain size, the male brain approximately 10% larger than the female – a difference not 
entirely accounted for by sex differences in body size (Reiss, Abrams, Singer, Ross, & 
Denckla, 1996; Witelson, Beresh, & Kigar, 2006). Other differences emerging from 
the literature depend on adjustments that are made to account for total brain volume, 
and thus are difficult to interpret (for a review, see Giedd, Raznahan, Mills, & Lenroot, 
2012). While determining sex differences between brain areas may shed light on 
differences in rates of cigarette initiation in males and females, key to the present 
discussion is the relative rate of development of reward and control brain regions 
within each sex. Both males and females show evidence for progressive thinning of 
GM and increases in WM through adolescence (De Bellis et al., 2001; Lenroot et al., 
2007). However, some of the changes in brain structure that occur throughout the 
adolescent period appear to be associated with puberty, as effects of pubertal 
development – not simply of age – on structural brain development have been 
observed in large‐scale longitudinal studies. (Goddings et al., 2014). Such pubertal 
effects may reflect the actions of pubertal hormones on the brain; but they may also 
result from other mechanisms, such as chromosome effects and experiential differ
ences associated with puberty across the sexes (Davies & Wilkinson, 2006; Blakemore, 
Burnett, & Dahl, 2010; McCarthy, Arnold, Ball, Blaustein, & De Vries, 2012). In 
line with differences in the timing of puberty processes across the sexes, with the 
earlier start of gonardarche in females (around 11 on average) than in males (around 
12 on average), and with the effects of puberty on brain development, longitudinal 
studies that use adolescent samples have noted sex differences in the developmental 
trajectories of many brain structures through adolescence, peak GM volumes occur
ring earlier for females than for males (Lenroot et al., 2007).

The Wiley Handbook on the Cognitive Neuroscience of Addiction, edited by Stephen J. Wilson, John Wiley & Sons, Incorporated, 2015. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/upenn-ebooks/detail.action?docID=2044656.
Created from upenn-ebooks on 2021-05-10 06:13:32.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n 

W
ile

y 
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll 
rig

ht
s 

re
se

rv
ed

.



296 David M. Lydon, Adriana Galván, and Charles F. Geier

Such sex differences in developmental trajectories of brain structure through 
 adolescence raise interesting questions in terms of the timing of the experience of an 
imbalance between reward and control functions and in terms of how this might 
render some individuals more vulnerable to cigarette use than others. Important 
conceptual and methodological advances have taken place in recent years – especially 
a heightened awareness of the need to account for allometric scaling (Giedd et al., 
2012), to use appropriate measures of pubertal status (Blakemore et al., 2010), and 
to consider design aspects such as the matching of samples on chronological age or 
pubertal status (Lenroot & Giedd, 2010). Such advances will help us address these 
questions in future research.

In line with the continued developments in brain structure through adolescence, 
functional magnetic resonance imaging (fMRI) studies have demonstrated develop
mental differences in the functioning of brain regions associated with reward 
processing and cognitive control. Across a range of studies, adolescents have shown 
greater VS responses than adults during reward anticipation (e.g., Galvan et al., 2006; 
van Leijenhorst et al., 2010) and less striatal activity than adults when assessing the 
incentive value for upcoming trials (Geier, Terwilliger, Teslovich, Velanova, & Luna, 
2010). Although this pattern of activity has not been observed in all studies (e.g., 
Bjork et al., 2004), the majority of studies suggest a heightened responsiveness during 
reward anticipation in adolescents (see Galvan, 2010 for discussion). This hyperre
sponsiveness to incentives seems especially likely to occur in the presence of peers 
(Chein, Albert, O’Brien, Uckert, & Steinberg, 2010). This is important for the 
consideration of adolescence risk behaviors because risk taking, including smoking 
initiation (Delorme, Kreshel, & Reid, 2003), often occurs in social contexts (see 
Albert, Chein, & Steinberg, 2013 for review). Findings from these studies suggest 
that adolescents may be vulnerable to behavior directed at rewards where the value of 
the incentive has not been adequately assessed.

In terms of cognitive control, adolescents often exhibit the capacity to employ 
sophisticated executive functions in order to engage in voluntary, planned behavior. 
In research on adolescents’ abilities to control behavior, two core executive functions 
have received the greatest attention: response inhibition and working memory. 
Response inhibition refers to the ability to inhibit habitual, behaviorally entrenched 
responses in order to direct behavior toward a more goal‐appropriate response. For 
example, in the antisaccade task – which is a widely used index of oculomotor inhibi
tory control – participants are asked to inhibit reflexive saccades toward a bright dot 
when it appears on a black background. Such an ability is important for goal‐directed 
behavior, as it allows an organism to resist engagement in reflexive responding and to 
engage in a more deliberative processing of stimuli before making a decision to engage 
or withdraw (Cacioppo, Gardner, & Berntson, 1999; Knoch & Fehr, 2007). Working 
memory refers to the ability to maintain a representation of one’s goals in mind. 
Engaging working memory allows people to keep on task for long enough to reach 
their desired long‐term goals.

Adolescents demonstrate near‐adult levels of performance on inhibitory control 
and working memory tasks, but they continue to become more accurate on such tasks 
into late adolescence and early adulthood (e.g., Munoz, Broughton, Goldring, & 
Armstrong, 1998; Luna et al., 2004; for review, see Best, Miller, & Jones, 2009). 
fMRI studies reveal that, while adolescent behavior may look a lot like adult behavior 
on cognitive tasks, its functional circuitry during these tasks resembles that of adults 
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performing a more difficult task (e.g., Scherf, Sweeney, & Luna, 2006). Also, while 
adolescents can clearly engage inhibitory control and working memory processes, the 
consistency with which they can maintain these processes over a span of time is not yet 
adult‐like. Indeed, there is evidence for a continued maturation of the ability to 
engage brain regions necessary for the sustained maintenance of cognitive control sets 
through adolescence (Dosenbach et al., 2007; Velanova, Wheeler, & Luna, 2009).

It may be expected that, given this hyperactivity in reward‐related regions and the 
continued maturation of cognitive‐control abilities, adolescents would demonstrate 
greater difficulty than adults in directing behavior toward long‐term goals in contexts 
in which salient rewards are present. Indeed, elegantly designed tasks manipulating 
the affective contexts associated with decision making and risk taking have demon
strated that adolescents have greater difficulty recruiting executive functions in the 
context of appetitive cues (Somerville, Hare, & Casey, 2011) and that they take more 
risks than adults in these contexts (Figner, Mackinlay, Wilkening, & Weber, 2009; 
Gardner & Steinberg, 2005).

While hypersensitivity to rewards and immaturities in cognitive control create an 
adolescent‐specific vulnerability to risky behaviors, the unique functioning of the 
adolescent brain presents a number of opportunities. The heightened reward sensi
tivity during adolescence may be an asset if behavior is oriented toward positive out
comes. Indeed, research has repeatedly demonstrated boosts in cognitive functions, 
even those control functions that adolescents typically perform less accurately than 
adults, when rewards are associated with the execution of those functions (Jazbec 
et al., 2006; Hardin, Schroth, Pine, & Ernst, 2007). Task‐related brain regions also 
demonstrate enhanced activity during such incentive‐motivated behaviors (Geier 
et al., 2010; Padmanabhan, Geier, Ordaz, Teslovich, & Luna, 2011). Thus there is 
some evidence that the heighted sensitivity to rewards during adolescence may be an 
asset if directed at positive behaviors and outcomes.

The Adolescent Brain and Smoking

The normative development of brain regions in the frontostriatal circuitry discussed 
above, including of the VS and of the dorsolateral prefrontal cortex (DLPFC), is 
particularly relevant to the current consideration of adolescent cigarette use, as the 
developing regions are implicated in cigarette‐cue reactivity in adults (Everitt & 
Robbins, 2005; Lee, Lim, Wiederhold, & Graham, 2005; Engelmann et al., 2012; 
Kang et al., 2012). As the VS exhibits hypersensitivity to rewards during adolescence 
while the DLPFC, implicated in the cognitive regulation of cigarette craving (Kober 
et al., 2010), undergoes protracted development through the same period, the 
adolescent‐specific neural instability may render adolescents, by comparison with adults, 
especially susceptible to the allure of appetitive smoking cues via increased craving.

Evidence suggests that prefrontal function differs between adolescent smokers and 
their nonsmoking counterparts. Using fMRI, Galvan and colleagues probed this 
question by asking adolescent smokers and nonsmokers to perform a response inhibi
tion task and a risky decision‐making task, both of which are known to elicit pre
frontal engagement. Although there were no overall group differences in activation, 
adolescent smokers showed differential engagement according to their level of 
dependence: in both the response inhibition and the risky‐choice tasks, the level of 
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dependence modulated the activation of numerous cortical regions, including the 
bilateral middle prefrontal gyrus, the left inferior frontal gyrus, the right superior 
frontal gyrus, and the cingulate gyrus (Galvan, Poldrack, Baker, McGlennen, & 
London, 2011; Galvan et al., 2013). Given the late development of the prefrontal 
cortex, it is possible that smoking may influence the trajectory of brain development 
during this critical developmental period. Future studies are warranted to determine 
whether the observed neurobiological differences precede or result from smoking.

Given the strong relationship between cue reactivity and subsequent smoking 
behavior in adults, more recent work has aimed to uncover the neural mechanisms 
underlying cigarette‐cue reactivity in adolescents. Adolescent‐smoking onset has 
consistently been associated with exposure to tobacco advertisement (Emery, Choi, & 
Pierce, 1999; Lovato, Linn, Stead, & Best, 2003; Wills et al., 2007), which suggests 
that adolescents are particularly susceptible to cigarette ads (Upadhyaya, Drobes, & 
Wang, 2006). Indeed Rubinstein and colleagues reported that smoking cues elicited 
greater activation than neutral (nonsmoking) cues in the mesolimbic reward circuit in 
adolescent smokers (Rubinstein et al., 2011). A control group of adolescent non
smokers did not neurobiologically differentiate smoking from nonsmoking cues 
(Rubinstein et al., 2011). Work from our laboratory has found similar results in a large 
sample of adolescent and adult smokers and nonsmokers who viewed age‐appropriate 
smoking cues (videos) while undergoing fMRI. Following the presentation of each 
smoking and nonsmoking (control) video, participants rated their craving level. By 
comparison to adult smokers, adolescent smokers demonstrated greater activation in 
the VS. Interestingly, we found significant individual differences in the link between 
neural activation and craving, such that greater cue‐induced cigarette craving was 
associated with greater VS activation in the adolescent smokers only; furthermore, the 
VS mediated the relationship between craving, the fMRI cues, and subsequent urges 
to smoke (after the scan) in adolescent smokers only (Do & Galvan, under review). 
Together, these data suggest that the developing striatum may be particularly vulner
able to the effects of cigarette advertisements in adolescent smokers.

These findings beg a follow‐up question: Is the adolescent brain susceptible to all 
smoking ads, including those that attempt to deter from smoking, or only to those 
that promote smoking? A recent study from our laboratory suggests that adolescent 
smokers are more sensitive than adult smokers to ads that both promote and deter 
smoking. Several countries have implemented graphic, pictorial warnings on cigarette 
packaging, in an effort to reduce smoking. Initial outcomes are promising, showing 
reduced smoking initiation rates, increased awareness of health consequences, nega
tive reactions to smoking cues, and increased cessation rates (Hammond, Reid, 
Driezen, & Boudreau, 2013; Partos, Borland, Yong, Thrasher, & Hammond, 2013). 
In 2010, the US Food and Drug Administration (FDA) released 36 graphic warning 
labels depicting potential negative outcomes of smoking to appear on tobacco prod
ucts. These graphic warnings included images of blackened lungs, a cancer patient, 
and decaying teeth among other emotionally aversive images. Litigation claims have 
delayed implementation in the US, but preliminary surveys examining the efficacy of 
these images among young or potential smokers are encouraging: graphic warning 
labels on cigarette packaging increased the perception of the dangers of smoking and 
reduced the social appeal of cigarette smoking (Peters et al., 2007; McCool, Webb, 
Cameron, & Hoek, 2012; CDC, 2013; Pepper, Cameron, Reiter, McRee, & Brewer, 
2013). Our study investigated neural responses to the proposed FDA graphic warning 
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labels in adolescent and young adult smokers and nonsmokers (Do and Galvan, 
invited resubmission). While undergoing fMRI, thirty‐nine 13–18‐year‐old adolescent 
and forty‐one 25–30‐year‐old adult smokers and nonsmokers rated their desire to 
smoke when presented with emotionally graphic FDA warning labels and, by com
parison, with nongraphic labels. Adolescent smokers exhibited greater craving reduction 
than adult smokers in response to the warning labels. Smokers versus nonsmokers 
evinced blunted recruitment of insula and DLPFC in response to the graphic labels – 
an effect that was stronger in adolescent smokers. Although the Family Smoking 
Prevention and Tobacco Control Act requiring the new FDA warning labels has been 
challenged, this study provides new evidence in support of the efficacy of the pro
posed US health warning labels on cigarettes and characterizes neural mechanisms 
that may underlie this effect in a US sample. Importantly, our data suggest that emo
tional systems are responsive to the graphic nature of the labels and that adolescent 
smokers and nonsmokers are particularly responsive, both behaviorally and neurobio
logically, to the proposed labels.

Persistent Effects of Adolescent Smoking on  
Brain Development

Beyond the early stages of cigarette initiation and dependence, it is perhaps not sur
prising, given the extensive brain development occurring at this time, that nicotine 
exposure during adolescence may have negative neurobiological consequences that 
persist into adulthood. In line with the view of adolescence as a vulnerable period for 
the effects of nicotine, higher rates of daily cigarette smoking have been observed 
following early versus late adolescent smoking onset (Chen & Millar, 1998; Everett 
et al., 1999). This is consistent with animal models of nicotine dependence, as ado
lescent rats acquire nicotine self‐administration at a faster rate than adult rats (Chen, 
Matta, & Sharp, 2007) and also demonstrate higher rates of self‐administration 
(Levin, Rezvani, Montoya, Rose, & Schwartzwelder, 2003).

Given that initial reinforcement consequences may set the stage for subsequent cig
arette use, this greater propensity on the part of adolescents to quickly uptake nicotine 
at high rates may be partly explained by adolescents’ increased sensitivity to reward. 
Indeed adolescent rats exhibit enhanced sensitivity to nicotine reward across many 
paradigms by comparison to adults (e.g., Adriani, Macri, Pacifici, & Laviola, 2002; 
Shram & Le, 2010), as well as a reduced sensitivity to nicotine’s aversive effects 
(Shram, Funk, Li, & Le, 2006). In humans, earlier initial smoking experiences have 
also been associated with a more pleasant experience and an increased probability of 
recurrent use (Buchmann et al., 2011). A second adolescent‐specific vulnerability that 
may help explain the increased uptake of cigarette smoking during this developmental 
period upon nicotine exposure is the normative tendency of adolescents to approach 
potential rewards without sufficient consideration of the consequences. This may 
render adolescents more likely to continue smoking once they have been exposed, 
since a normatively heightened incentive motivation toward cigarette use overrides a 
still maturing cognitive‐control system.

Differential neurobiological adaptations in response to nicotine exposure across age 
groups are also likely to be important (e.g., Cruz, DeLucia, & Planeta, 2005; 
Schochet, Kelley, & Landry, 2005). Much more work needs to be undertaken to 

The Wiley Handbook on the Cognitive Neuroscience of Addiction, edited by Stephen J. Wilson, John Wiley & Sons, Incorporated, 2015. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/upenn-ebooks/detail.action?docID=2044656.
Created from upenn-ebooks on 2021-05-10 06:13:32.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n 

W
ile

y 
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll 
rig

ht
s 

re
se

rv
ed

.



300 David M. Lydon, Adriana Galván, and Charles F. Geier

determine how the increased plasticity of the adolescent brain interacts with nicotine 
exposure, but existing work suggests that changes must take place quickly after nico
tine exposure, as the time course from smoking initiation to nicotine dependence 
during adolescence seems to be rapid (Dierker, Swendsen, Rose, He, & Merikangas, 
2012). Adolescents report nicotine dependence symptoms within days or weeks of 
the onset of occasional smoking (DiFranza et al., 2000).

In terms of long‐term effects into adulthood, a protracted behavioral profile that 
persists beyond one month of nicotine abstinence after adolescent exposure, charac
terized by anxiety (Slawecki, Thorsell, Khoury, Mathe, & Ehlers, 2005; Smith et al., 
2006), depressed mood (Iniguez et al., 2009), and anhedonia (Ribeiro‐Carvalho 
et al., 2011), has been observed in rodent models of adolescent exposure to nicotine. 
Long‐term effects of adolescent nicotine exposure on cognition have also been 
observed, including deficits in serial‐pattern learning (Fountain, Rowan, Kelley, 
Willey, & Nolley, 2008) and in spatial and recognition memory (Mateos et al., 2011), 
as well as increased impulsivity (Counotte et al., 2009). In line with the view of ado
lescence as an especially vulnerable developmental period on account of the persistent 
effects of environmental perturbations, many of these persistent effects appear to be 
specific to adolescent, but not adult only, nicotine exposure (e.g., Iniguez et al., 2009; 
Counotte et al., 2009; Bracken, Chambers, Berg, Rodd, & McBride, 2011).

While the underlying neurobiological changes accompanying the persistent 
behavioral effects of adolescent nicotine exposure remain to be fully defined, animal 
studies have observed neurotoxic effects of nicotine on the developing adolescent 
brain. Persistent cellular damage has been observed in the midbrain, hippocampus, and 
cerebral cortex following adolescent nicotine exposure (Trauth, Seidler, McCook, & 
Slotkin, 1999; Trauth, Seidlier, & Slotkin, 2000; Abreu‐Villaca et al., 2003). Persistent 
changes in nicotinic acetylcholine receptor expression (Trauth et al., 1999) and 
acetylcholine synaptic function (Slotkin, Ryde, & Seidler, 2007), as well as persistent 
changes in noradrenergic, dopamine, and serotonergic system functioning (Trauth, 
Seidler, Ali, & Slotkin, 2001; Xu, Seidler, Cousins, Slikker, & Slotkin, 2002; Counotte 
et al., 2009), have also been observed following adolescent nicotine exposure. As in 
the case of the persistent behavioral effects of adolescent nicotine exposure, there is 
some evidence that the effects of nicotine on neurobiology are less persistent after 
adult than after adolescent exposure (Trauth et al., 1999; Adriani et al., 2003; Slotkin, 
Ryde, Mackillop, Bodwell, & Seidler, 2008).

Establishing the adolescent‐specific, persistent effects of nicotine exposure in humans 
is much more difficult, given the more limited capacities to control for confounding 
factors and to limit nicotine exposure to the developmental periods of interest. 
However, a burgeoning literature on young adult smoking provides some evidence for 
the persistent negative effects of adolescent‐specific nicotine exposure. Young adult 
smoking may in many cases be a progression from adolescent smoking, but results 
from a 2012 national survey on drug use observed an increase from 623,000 in 2002 
to 1.1 million in 2012 in the number of individuals initiating cigarette use at the age of 
18 or later (Substance Abuse and Mental Health Services Administration, 2013). These 
recent changes in the smoking landscape allow for a consideration of the consequences 
of adolescent versus young adult smoking onset on trajectories of nicotine dependence.

Important foundational research on the prevalence and characteristics of college 
smoking suggests that young adult smokers are a heterogeneous group. On the basis 
of patterns and contexts of tobacco use, Sutfin, Reboussin, McCoy, and Wolfson (2009) 
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identified five subgroups of smokers: heavy smokers (28%), moderate smokers (22%), 
social smokers (19%), puffers (26%), and no‐context smokers (4%). Only heavy 
smokers were daily smokers, most of the sample demonstrating patterns of nondaily 
smoking. A complementary study using a longitudinal design adopted a data‐driven 
approach to identify distinct trajectories of smoking among college students; this was 
a longitudinal study spanning four annual assessments after college entry. Caldeira 
et al. (2012) identified five distinct smoking trajectories: stable not smoking (71.5%), 
low and stable smoking (13.3%), low and increasing smoking (6.5%), high and stable 
smoking (5.5%), and high and decreasing smoking (3.2%). Smoking patterns were 
relatively stable over the course of the 4‐year study, suggesting that intermittent 
smoking may not be a transitory phenomenon, but one that may be stable for at least 
a number of years. Crucially, age at first cigarette predicted smoking subgroups, heavy 
smokers being more likely to report a younger age of smoking initiation than social 
smokers or puffers (Sutfin et al., 2009). Age at first cigarette also distinguished dis
tinct smoking trajectories, high and stable smokers smoking for longer periods than 
high and decreasing smokers (Caldiera et al., 2012). Such findings highlight the role 
of adolescent onset in smoking and suggest that nondaily, young adult light smokers 
who initiate in late adolescence or early adulthood may be less vulnerable to the 
effects of nicotine and may be experiencing fewer of the persistent effects of nicotine 
associated with smoking during adolescence. Further studies comparing adolescent 
and young adult onset in smoking, especially through fMRI technologies, will be 
important to test this theory.

Intervention Opportunities

Given these vulnerabilities associated with nicotine exposure during adolescence, the 
development of preventive interventions to discourage or delay the onset of smoking 
is crucial. Multicomponent interventions that have demonstrated effectiveness at 
reducing the prevalence of adolescent smoking have targeted beliefs about smoking 
and have focused on the development of skills to resist social influences that encourage 
smoking (e.g., Sussman, Dent, & Stacy, 2002; Botvin & Griffin, 2004; Flay, 2009). 
There is little evidence for the long‐term effectiveness of the majority of these pro
grams (for review see Wiehe, Garrison, Christakis, Ebel, & Rivara, 2005), and 
researchers have called for the consideration of adolescent neurobiological development 
and decision making when designing interventions to prevent substance use (Lopez, 
Schwartz, Prado, Campo, & Pantin, 2008). A greater consideration of the cognitive 
capacities of adolescents during the periods and in the contexts in which smoking ini
tiation often occurs – that is, in affectively charged contexts, in the presence of peers – 
will likely enhance the effects on interventions on smoking behaviors. Building 
adolescent decision‐making capacities in affectively charged conditions, as occurs to 
some extent in the existing interactive intervention components (e.g., Tobler & 
Stratton, 1997; Black, Tobler, & Sciacca, 1998), may render the skills learned during 
interventions more effective and more likely to be executed also in the real‐life con
texts in which cigarette initiation most often occurs.

Looking beyond individual adolescents and involving school (Sun, Skara, Sun, 
Dent, & Sussman, 2006), family (Lochman & van den Steenhoven, 2002), and wider 
community (e.g., Biglan, Avry, Smolkowski, Duncan, & Black, 2000) contexts will 
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likely be necessary, given adolescents’ normative tendency toward impulsive respond
ing in affectively charged contexts. Interventions in such contexts will rely less on 
attempting to curb developmentally normative adolescent tendencies to approach 
novel and potentially rewarding stimuli such as cigarettes, and more on reducing the 
number of smoking opportunities encountered by adolescents.

In terms of efforts to reduce adolescent smoking once it has begun, the hypersensi
tivity to rewards manifest during adolescence may present opportunities for interven
tions. Contingency‐management approaches to cigarette reduction attempt to encourage 
smoking abstinence by manipulating the contingencies associated with cigarette 
smoking (see Prendergast, Podus, Finney, Greenwell, & Roll, 2006). By enhancing the 
value associated with a target behavior (e.g., continued abstinence) through the provi
sion of an incentive, they aim to encourage the allocation of cognitive resources to the 
achievement of the target behavior. Contingency‐management approaches targeting 
adolescents have shown some promise (e.g., Krishnan‐Sarin et  al., 2006; Reynolds, 
Dallery, Shroff, Patak, & Leraas, 2008) and, given the increased enhancement of exec
utive functions through the allocation of incentives during adolescence, this approach 
will likely be a fruitful area for adolescent smoking intervention.

Conclusion

While there is still much knowledge to be uncovered on this important topic, the studies 
reviewed here suggest that the dynamic nature of the adolescent brain may render 
it particularly susceptible to smoking initiation and to the effects of cigarette smoking. 
The evidence underscores the importance of targeting adolescents for smoking reduc
tion, since they constitute a population that may be vulnerable to smoking but whose 
unique brain configuration also provides unique opportunities for intervention. 
Eradicating this significant public‐health issue will greatly ameliorate the health‐
compromising and psychosocial risks of cigarette smoking.
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