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Abstract. In this driving study, participants were assigned to a driver-
passenger dyad and performed two drives along Interstate-95 in normal traffic
conditions. During the driving session, the driver had to safely navigate the route
while listening and discussing news stories that were relayed by the passenger.
The driver then performed a set of memory tasks to evaluate how well they
retained information from the discussion in a multitask context. We report
preliminary analyses that examined subjective factors which may influence
success in social communication, including trait and state similarity derived
from questionnaires as well as physiological synchrony from implicit state
measurements derived from brain activity data. Although this dataset is still in
collection, these initial findings suggest potential metrics that capture the con-
textual complexity in naturalistic, multitask environments, providing a rich
opportunity to study how successful communication reflects shared social and
emotional experiences.
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1 Introduction

For the majority of Americans, driving serves as an essential component of life
activities, providing a means for commuting to work, attending social gatherings, and
transporting goods from stores to home [1, 2]. Thus, driving has become a task that
consumes a large amount of time for many, and the automotive industry has sought
technological innovations that improve both the comfort and safety of driving. An
impressive suite of technologies have parameterized core components of driving,
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including collision-avoidance sensors, lane-keeping technology, adaptive cruise con-
trol, and voice-activated controls [3–5]. As these assistive features have improved,
several self-driving cars have been approved for on-road testing. Waymo and Uber
have autonomous vehicles driving along normal commute routes in Silicon Valley,
Pittsburgh, and Austin (to name a few). While the timeframe for a full conversion from
human drivers to automated drivers is unknown (for an in-depth prediction, see [6]), the
success of self-driving cars amidst human-driven cars suggest that the nature of driving
may rapidly evolve [7, 8]. Soon, drivers may need to spend less effort safely navigating
their vehicle; instead, drivers may need to balance the basic oversight of autonomous
driving while they engage in other tasks, such as social communication.

In our driving study, we still rely on human drivers for controlling the vehicle, but
driving along Interstate-95 is concurrent with a communication task between a driver
and passenger. This route was chosen for minimal risk driving conditions with clear
lane markings, minimal navigation decisions, and calm traffic patterns. These condi-
tions approximate the level of engagement that drivers may need to oversee the per-
formance of near-term self-driving cars [9], so here, we use it as a proxy for studying
how communication dynamics may be influenced in a naturalistic, multitask context.
Navigating the interstate with real traffic dynamics carries risk for injury if the driver
does not maintain sufficient engagement with the primary driving task [10]. This task
hierarchy provides a context to study how a multitask environment influences per-
formance on a secondary task, namely communication with an in-car passenger.

Our experimental design, however, investigates additional layers of contextual
complexity that may modulate performance on the communication task. Successful
communication inherently involves implicit and explicit processing of information
between two or more individuals, and previous research has shown that increased
synchrony between people correlates with successful transfer of information [11–13].
Furthermore, recent extensions suggest that concurrent activity between brains may
represent abstract cooperative efforts (i.e. hyperscanning: [14]), including rhythmic
tapping [15] and musicians performing [16]. Complementary results have been
observed in social domains where individuals with similar neural activity during social
exclusion demonstrate similar susceptibility to peer influence [17] and have similar
real-life social network structures [18].

Our core hypothesis posits that successful communication depends upon shared
social experiences and similar emotional states that facilitate joint understanding of
information and interest in comprehending another’s perspective on a topic. In our
driving study, we collected several metrics about a participant’s social interactions,
including their real-life social network structure as well as their interactions with their
dyad partner outside of the study. Similarly, a participant’s communication perfor-
mance will likely be heavily influenced by their current state, e.g., emotional, physi-
ological, and cognitive states. We collected both explicit estimates of state, indexed by
self-report questionnaires, as well as implicit estimates from physiological data from
brain (EEG) and body (HRV, GSR). Consequently, our experimental design allows us
to examine how these various contextual factors influence a driver’s performance on a
communication task that is embedded in a multitask, driving context. Here, we present
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a set of preliminary analyses on only a small subset of these individual difference
measures. Although this data is still in collection, our initial findings indicate the
promise of similarity and synchrony metrics to capture trait and state influences on
performance in a naturalistic, multitask context.

2 Methods

Participants. The present study used data from twenty-eight adults (68% male)
between the ages of 21 and 55 (M = 38.02; SD = 11.44) who participated as part of an
ongoing longitudinal experiment aimed at investigating the communication dynamics
between driver-passenger dyads during interstate driving under naturalistic conditions.
All study volunteers provided informed consent in accordance with study approval
from the accredited Institutional Review Board at U.S. Army Research Laboratory and
in accordance with the U.S. Army Research Laboratory Human Research Protection
Program (32 CFR 219 and DoDI 3216.01). Participants were recruited either from the
U.S. Army Research Laboratory (Aberdeen Proving Ground) or DCS Corporation
(Alexandria, VA and Abingdon, MD locations) to ensure that they received liability
insurance in the event of a car accident (none occurred). Inclusion criteria consisted of
being at least 21 years of age, having normal or corrected to normal visual acuity, and
possession of an unrestricted driver’s license for a minimum of two years. Participants
were excluded if they had medical conditions that prevented normal driving (e.g.,
seizures) or motion sickness in cars. All criteria were assessed through self-report.

Experimental Design. An overview of the experimental design for the 9–15 week
longitudinal study is depicted in Fig. 1. During a 40-min intake session, participants
received an actigraphy watch (Readiband Actigraph SBV2; Fatigue Science, Van-
couver, BC) to monitor sleep and physical activity throughout the course of the study,
provided a cell phone number to receive daily text messages during the study, and
completed a one-time set of trait assessments. In these preliminary analyses, we only
report trait data from the Social Network Information questionnaire.

Participants were then assigned to driver-passenger dyads based on their schedule
availability for drives. Each dyad completed two driving sessions: one where they were
the passenger and one as the driver. Each driving session took approximately 2.5 to 3 h
to complete. Traffic, weather, and vehicle conditions were assessed prior to each ses-
sion, and drives were only conducted when both participants and the experimenters
agreed that conditions met minimal risk criteria.

The driving session occurred in an all-wheel drive, 2016 Ford Fusion Titanium
instrumented with an Ergoneers D-Lab data acquisition system. As depicted in Fig. 1B–
D, each driving session consisted of three segments: pre-drive, on-drive, and post-drive.
The D-Lab recorded time-synchronized multi-sensor vehicle environment data for all
three segments, including MobilEye and On-Board Diagnostics (OBD) data, audio, and
four channels of video. One camera recorded the external environment out the front
windshield, one out the back windshield, one angled at the driver seat in the car, and one
angled at the passenger seat. The MobilEye provided driving performance data by
monitoring the vehicle position and elements of the external environment, such as lane
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markings and other traffic. Additional driving performance can be ascertained from
OBD data, including steer angle, speed, acceleration, and braking. None of these data
are reported in these preliminary analyses, but the recorded dialogue in the audio file and
facial/body gestures in the videos serve as the basis for planned analyses about suc-
cessful communication during the driving session.

During the pre-drive segment, each participant separately completed a series of state
assessments while they were outfitted with a set of multimodal physiological sensors to
measure brain activity, respiration, heart rate, and galvanic skin responses. Each par-
ticipant then completed pre-drive tasks based on their role for the driving session. The
driver reviewed the route and safety procedures outside the vehicle, while the passenger
sat in the vehicle and watched 16 videos of unique news stories on a tablet. The
passenger was asked to remember as many news stories as possible to share them with
the driver in conversation during the on-drive segment. The dyad then jointly watched
an instructional video about their responsibilities for the drive and provided 3 min of
baseline physiological data. Once in the vehicle, the physiological sensors were paired
to recording devices and synchronized with the D-Lab system data through the use of a
common reference signal (engine RPM) recorded to all data logs using OBD splitters;
this common reference ensured time synchronization across participants and
vehicle/task events during the driving session. In these preliminary analyses, we only
report physiological data from the brain sensors as well as state data from three
questionnaires, the Perceived Stress Scale (PSS), the Motivation Visual Analog Scale
(MVAS), and the Driver-Passenger Social Interaction questionnaire (DPSI).

The on-drive segment consisted of three subcomponents. During the first 10 min,
the dyad jointly listened to a 2-min podcast about the importance of sleep or physical
activity for healthy living (one topic was assigned to each drive; counterbalanced
between dyads) and then discussed their opinions about the health information. Next,
they drove 40 miles on Interstate-95, turning around at 20 miles, and the passenger
communicated details about the news stories with the driver in two sequential memory
tasks. The first was an open recall task where the passenger had 5 min to share as many
news stories as they could remember and engage the driver in a discussion about their
opinions on the topics. The second memory task was a cued recall where the passenger
saw a visual cue for each of the 16 unique news stories, and the dyad discussed the
topic for 1 min each. After the dyad exited the interstate, they spent the final 10 min
jointly listening to a second podcast on the same health topic as the start of the drive,
and they freely discussed their opinions on the additional health information.

Finally, in the post-drive segment, each participant separately completed a series of
survey assessments as well as a 32-item recognition memory task about fine-grained
details from the news stories (e.g., change tax burden to 25% or to 32%, where one is
accurate and the other is a lure). However, the driver completed two additional memory
tasks without the passenger present. The first was a 3-min open recall to recount as
many news stories and conversation details as possible, and the second was a cued
recall task where they had 40 s to talk aloud about each of the 16 cued news clips,
including details about the opinions discussed with their dyad partner during the drive.
In short, across these two additional tasks, the driver reported details that captured how
successfully the passenger communicated the news stories as well as the success of the
dyad’s information exchange in the discussion itself.
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After all of the tasks in the driving session were completed, the experimenters
removed physiological sensors and debriefed the participants. The participants then
completed the daily text tasks while wearing the actigraphy watch for 2–3 weeks before
returning for their second drive. The flow of drive 2 mirrored drive 1, except that the
participants changed roles (i.e., driver in drive 1 is passenger in drive 2) and they
discussed a different, unique set of the 16 news clips.

2.1 Trait Similarity Metric

Social Network Analysis. During the intake session, participants completed a web-
based application [19] to characterize their real-life social networks. In this task, par-
ticipants identified up to 10 people with whom they have communicated in the past
week in each of four communication types: face-to-face conversation, voice call, text
messaging, and online social media. The maximum number of unique individuals
possible to include was 40, but many participants had communicated with the same
subset of people across the media or had communicated with fewer than 10 people
through at least one medium in the past week, so all social networks consisted of fewer
than 40 individuals. For each unique individual listed, the participant then indicated the
strength of their relationship (“closeness”), subjective estimates of their friend’s pref-
erences (“driving riskiness” and “political interest”), and which of their friends knew
each other. From the latter responses, an undirected graph of their most recent contacts
was computed, where each node corresponds to a friend and an edge connects every
pair of people who know each other. The size of the social networks ranged from 13 to
33 people (Mean = 21.0; SD = 5.0).

We calculated the density of each social network by taking the number edges and
dividing by the number of possible edges (i.e., the number of edges in a fully connected
graph where every friend of the participant is also a friend with each other). Thus, a
higher density corresponds to a social network in which more of the participant’s
friends know each other, while a lower density indicates that a participant has more
distinct groups of friends.

2.2 State Similarity Metrics

Perceived Stress Scale (PSS). During the pre-drive segment, participants provided
self-report responses on a 10-item Perceived Stress Scale [20], capturing subjective
perceptions of stress. Responses were scored on a 5-point Likert scale (0 = never to
4 = very often) regarding thoughts and feelings experienced within the last month.
Sample items included, “In the last month, how often have you been able to control
irritations in your life?” and “In the last month, how often have you felt nervous and
stressed?” A total score was calculated by summing scores on all items, where higher
total scores indicated higher levels of perceived stress.
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Fig. 1. Experimental Design Overview. (A) During an intake session, participants provided
social network information as a trait variable. (B) Both driver and passenger completed pre-drive
state surveys (e.g., PSS, MVAS, DPSI) and tasks specific to their role in the drive. In particular,
the passenger separately watched 16 video news clips that served as discussion topics during the
drive. (C) During the on-drive segment, the passenger communicated the news topics and led a
discussion with the driver. All vehicle CAN bus data (speed, time to contact, steering, lane
position, etc.) and multimodal physiological data (EEG, respiration, heart rate, and galvanic skin
responses) were measured and synchronized continually throughout the driving session. (D) In
the post-drive segment, participants independently completed memory tasks and post-drive
surveys. (E) Several weeks later, the dyad returned for a second drive, but they swapped roles
(driver in drive 1 is passenger in drive 2) and discussed a different set of news clips.
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Motivation Visual Analog Scale (MVAS). During the pre-drive segment, participants
were asked to provide subjective ratings of general motivation on a scale from 0 (“I am
not motivated”) to 100 (“I am very motivated”). The scale was represented as a hor-
izontal line with an initial position of the slider at 50 in the middle. Visual analog scales
are typically used to provide a visual guide for participants to rate their perception of
subjective feelings or states on a continuous scale by choosing a location between two
extremes [21–24].

Driver-Passenger Social Interaction Questionnaire (DPSI). In order to assess the
existing relationship between dyad partners prior to the study session, participants
answered 5 items regarding the frequency of interaction as well as the likelihood of
accepting advice from their partner for general and work-related concerns. For the
present study, we focused on the frequency of casual interaction prior to the study
session. During the pre-drive segment, participants indicated frequency using the fol-
lowing scale: 0 = Never, 1 = Past 12 Months, 2 = Past 6 Months, 3 = Past Month,
4 = Past Week, and 5 = Last Day.

2.3 Physiological Synchrony Metric

Electroencephalography (EEG). For this study, we used the ABM B-Alert X24
Electroencephalography (EEG) system (Advanced Brain Monitoring, Inc, Carlsbad,
CA) sampled at 256 Hz. The flexible electrode strip consisted of a set of flat electrodes
in standard 10–20 scalp locations, and conductive paste was placed on cylindrical foam
pads on each electrode to serve as the conductive medium between the scalp and
sensor. The electrode strip was then affixed to a headband that was adjusted to fit the
head of the participant, and a wireless transmitter that attached to the headband sent
EEG signals to a separate device for data capture. The B-Alert system is relatively
light, weighing less than 200 g, allowing the participant to freely move during the
driving session.

The EEG data were preprocessed to remove nuisance and non-brain signals, such as
muscle activity, electrical noise in the car, and vehicle movement, using the PREP
approach implemented in EEGlab [25]. The steps included are: (1) line noise removal
via a frequency-domain (multi-taper) regression technique to remove 60 Hz and har-
monics present in the signal, (2) a robust average reference with a Huber mean, (3) ar-
tifact subspace reconstruction to remove residual artifact with the standard deviation
cutoff parameter set to 5, (4) band-pass filtering using a Butterworth filter with 2-dB
attenuation at 2 and 50 Hz, and (5) an automated independent component analysis-
based component removal to specifically target residual muscle and eye-related artifacts
that may influence our physiological synchrony metric [26]. This artifact removal
procedure has been shown to be robust to high artifact environments [27, 28].

EEG Synchrony. Across the entire duration of the on-drive segment, we estimated
EEG synchrony in the alpha band (8–12 Hz) between dyad partners using Matlab
(Mathworks, Inc.). For each channel pair, the phase-locking value (PLV) was com-
puted using a Hilbert transform across 2 s EEG epochs in 62 ms steps. PLV estimates
the similarity in phase between the two signals [12], where 1 equates with perfect phase
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locking and 0 with no phase locking. In this preliminary analysis, we focused on alpha
since this frequency band has been proposed as a gating mechanism for perceptual
information [29] or access controller for semantic knowledge [13], both of which may
underlie successful communication via physiological synchrony.

3 Results

Our preliminary analyses focused on identifying and describing variability of subjec-
tive factors that may influence social communication between and within driver-
passenger dyads. Here, we utilized data from intake and drive 1 sessions from a dataset
still in collection, and we examined similarity among both trait and state metrics as well
as synchrony for a physiological metric derived from scalp EEG data.

3.1 Real-Life Social Networks Capture Trait Similarity Among Dyads

We first used social network analysis to examine individual differences in trait metrics
derived from the participant’s real life social interactions. Using an online tool [19],
participants reported their most recent interactions and indicated which friends knew
one another. From these relationships, we computed the density of the participant’s
social network. A social structure with high density denotes a network where a large
proportion of a participant’s friends know one another, while a low density indicates
that the participant may have distinct clusters of friends who know one another but little
crossover among subgroups of friends.

The social network density for each dyad collected thus far is plotted in Fig. 2:
individual participants are indicated by a circle connected to their dyad partner by a
line, so that their adjoining line reflects their similarity (short line = high similarity,
long line = low similarity). Across dyads, we observe variability in density, including
dyad 4 where the participants’ network densities are 0.61 and 0.68 and dyad 3 where
each participant’s density is 0.32. In contrast, we also have dyads where the partici-
pants have dissimilar network density scores, such as dyads 8 and 12.

Next, we illustrate the social network structures for several dyad partners as a
graph. In each graph, the participant is represented as the red node, friends are black
nodes, and edges between nodes represent a direct connection. For participants in
dyads 2 and 3, their social network reflects clusters of friends with interconnections, but
often the only connection between clusters is through the participant. In contrast, dyad
8 includes one participant who has a similar cluster structure, while the other mostly
interacts with friends who also know one another. Thus, within the current participant
sample, we observe variability both within and between dyad participants, indicating
that this trait measure can be examined as a covariate to account for variablity in
communication success in future analyses.
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3.2 Dyad Interaction Outside of the Experiment Relate to State Effects
at Drive 1

We next examined intra- and inter-dyad variability in subjective reports of motivation
and stress at the start of their first driving session. Variability in intra-dyad scores was
observed for metrics (Fig. 3 top). Absolute difference scores were calculated to
determine the level of intra-dyad similarity for subjective state measures. Specifically,
dyads 1, 2, 5, 6, 8, and 10–12 exhibited relatively high levels of intra-dyad similarity
for motivation as indicated by lower absolute difference score values (short adjoining
lines). In contrast, dyads 3, 4, 7, 9, 13 and 14 displayed relatively low levels of intra-
dyad similarity for motivation (long adjoining lines). Across dyads, there was high
inter-dyad variability in general motivation (range = 0–40; SD = 15.10).

For perceived stress, dyads 1, 5, 10–12, and 14 exhibited relatively high levels of
intra-dyad similarity (short adjoining lines), whereas dyads 2–4, 6–9, and 13 showed
relatively low levels of intra-dyad similarity (long adjoining lines). Across dyads,
results demonstrated high inter-dyad variability in perceived stress at the start of their
first drive session (range: 1–14; SD: 4.04). Interestingly, we observed consistency for
the intra-dyad similarity between these two state metrics. Dyads 1, 5, and 10–12 had
low absolute difference values for both the motivation and stress state metrics. Notably,
dyads 2, 5, and 6 also displayed high levels of similarity for both density of social
networks (trait) and general motivation (state).

Fig. 2. Trait Similarity Metric. Participants’ social network information was extracted using
Friendly Ocean [19]. Examples from several dyads are depicted. For each subject’s social
network, density or the number edges divided by the number of possible edges was calculated.
Higher density reflected social networks in which participants’ friends were acquainted (see dyad
8, right), while lower density within the network is indicative of distinct groups of friends (see
Dyad 2).
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Finally, we capitalized on the fact that our participants were recruited from two
cohesive work environments, and most had interacted with each other prior to the
experiment. This analysis examined whether intra-dyad similarity in state metrics
related to the frequency of the dyad’s real-life interactions. In Fig. 3 (bottom row), the
scatter plots relate the two state metrics (motivation left and stress right) with the
participant’s reported frequency of casual interaction in the DPSI questionnaire done
during the pre-drive segment of the driving session. Preliminary results demonstrate a
negative trend between general motivation scores and frequency of interaction, such
that participants with relatively higher motivation scores are those that interact less
frequently (r = −.28). In contrast, there appears to be a positive trend between per-
ceived stress and frequency of interaction in the real-world demonstrating that those
who interact more frequently reported higher levels of perceived stress (r = .29). These
trends suggest that frequency of interaction with a dyad partner may produce differ-
ential effects in subjective state metrics. Individuals may be more highly motivated to
make a strong first impression with new colleagues, while they simultaneously

Fig. 3. State Similarity Metrics. Top row: state estimates for each participant, organized by
dyads, for MVAS and PSS pre-drive surveys are depicted. Lines connecting driver and passenger
scores reflect their level of similarity. Bottom row: self-report scores on the MVAS and PSS are
plotted as a function of the self-reported level of interaction outside the experiment, where
0 = never, 1 = last 12 months, 2 = last 6 months, 3 = last month, 4 = last week, and 5 = last day.
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experience heightened performance-related stress with partners with whom they
interact frequently. However, we acknowledge that these emerging trends are prelim-
inary and may change as we collect additional data.

3.3 Neural Synchrony Captures Time-Evolving Relationships Between
Dyad Partners

While the first two analyses investigated similarity in state and trait variables, our final
preliminary analysis examined the amount of synchrony between physiological mea-
surements during the drive. In Fig. 4, the PLV synchrony metric is shown for a single
dyad for the initial task of the on-drive segment of drive 1. The first time segment
(labeled −60 to 0) is the joint listening task to a health podcast, while the second time
segment (labeled 0 to 60) is the open discussion about the health information. The heat
map at the bottom of Fig. 4 displays the range of PLV across the time interval with a
maximum synchrony of PLV = 0.64. The purple line located above the heat map
averages the synchrony across channels and displays a complex temporal profile of
intervals of synchrony and asynchrony within and across both time segments. Finally,
the two topographic plots on the head models at the top of Fig. 4 reveal that the spatial
pattern of this physiological synchrony metric is maximal in the back of the scalp,
which likely reflects visual processing. This might indicate a jointly perceived change
in the environment (e.g., traffic), but future research will relate these metrics and spatial
patterns to successful communication to investigate whether neural synchrony can
account for moment-to-moment fluctuations in successful communication.

Fig. 4. Inter-subject Synchrony. Sample time segment of the PLV synchrony metric for a single
dyad during the initial task of the on-drive segment of drive 1. The topographic plots on the head
models at the top show the spatial distribution of the PLV across the scalp 20 s before and after
the task transition. The purple line plot displays the average synchrony across channels shown in
the heat map at the bottom of the figure.
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4 Discussion

The present study provides a framework for understanding the subjective factors that
may influence social communication variability within a multitask, driving context. Our
core hypothesis asserts that successful communication between driver-passenger dyads
will likely occur when similarity in shared social experiences or emotional states arise,
providing a foundation for engagement and interest in understanding another’s per-
spective [30, 31]. In this paper, we conducted preliminary analysis on a set of subjective
factors that operationalized these trait and state relationships. These results demon-
strated strong intra- and inter-dyad variability among social network structure in the trait
similarity metric. Furthermore, we also observed a trending relation showing that real
life interactions between dyad partners accounted for variability in motivation and stress
states at the beginning of their first driving session. Finally, we investigated implicit
measures of state captured in the physiological synchrony from scalp EEG sensors.
Preliminary results identified that alpha activity captures dynamic fluctuations in neural
synchrony which can be used as a covariate in future analyses of communication suc-
cess. Collectively, these explicit and implicit metrics of similarity and synchrony may
play critical roles in shaping successful communication between dyad partners.

Our future analyses will examine both the audio and video files collected during the
drive to characterize and quantify dyad communication [32]. From the transcript of the
driver’s post-drive memory tasks, we can determine the number of news stories
remembered as well as recall of idiosyncratic details from the conversation, reflecting
driver engagement when communicating with their partner. Furthermore, natural lan-
guage processing [33, 34] will be applied in order to extract sentiment information and
quantify attitudes expressed by individuals within and across dyads. We expect that the
passenger’s valence while communicating the news stories may influence memory and
recall of the driver [35]. Similarly, analysis of the videos will focus on extracting
gestures and facial expressions that may also capture implicit metrics of connection that
drive successful communication [36–38]. Lastly, we plan to investigate how these
metrics of social communication are related to driving performance, including how
social interactions and bonding can positively impact not only performance in the
vehicle but health and well-being more generally.

In summary, our initial results demonstrate promising metrics that can quantify how
social and emotional experiences influence performance in naturalistic, multitask
environments. By identifying ways to quantify contextual complexity, this translational
research can augment our understanding about how to enhance human performance
within contexts with increasingly sophisticated technology automation.
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