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How do brains shape social networks, and how do social ties shape the brain?
Social networks are complex webs by which ideas spread among people.
Brains comprise webs by which information is processed and transmitted
among neural units. While brain activity and structure offer biological mecha-
nisms for human behaviors, social networks offer external inducers or modu-
lators of those behaviors. Together, these two axes represent fundamental
contributors to human experience. Integrating foundational knowledge from
social and developmental psychology and sociology on how individuals func-
tion within dyads, groups, and societies with recent advances in network
neuroscience can offer new insights into both domains. Here, we use the
example of how ideas and behaviors spread to illustrate the potential of
multilayer network models.

[375_TD$DIFF]Brain and Social Networks: Fundamental Building Blocks of Human
Experience
The structure of our social world is incredibly complex and involves multiple interacting units [1].
Questions that hinge on understanding when, how, and why these units interact require
theories and methods that address this heterogeneous pattern of interpersonal connectivity.
Network science offers theories and methods that can capture the richness of interconnection
patterns [2], pinpoint local network nodes that influence global function [3], and offer tools to
intervene in a way that drives social network change [4,5]. Integrating these theories and
methods with empirical studies offers a powerful means to uncover a set of principles that
describe behavior in terms of network structure and function across domains. For example,
there are intriguing similarities between the patterns of interconnectivity among individuals in a
close-knit family [6], members in a team [7], activists in political uprisings [8], companies in the
corporate world [9], and countries engaging in efforts supporting global diplomacy [10]. Indeed,
the term ‘social network’ is perhaps a misnomer, being a general term for what is in fact a set of
interacting networks at multiple levels of analysis that form the fabric of our social and cultural
lives.

Although units in social networks can be countries, companies, or compatriots, typically the
smallest unit studied in social network research is that of a single person: the atom of the social
network universe. Yet, [376_TD$DIFF]as the atom is composed of first protons and neutrons, then quarks, a
person is in fact composed of smaller units that interact in networks of their own [11]. This is the
fodder of the emerging field of network neuroscience [12], which pursues new ways to map,
record, analyze, and model the elements and interactions of neurobiological systems. In
humans, this enterprise seeks to understand the pattern of connections in an individual’s
brain that code for their personality [13,14], behavior [15,16], and risk for disease [17–19], as
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well as [377_TD$DIFF]for their potential to adapt to their surroundings [20], engage in meaningful relationships
with others [21], and participate in a larger team [22]. Such predictive patterns of connections
exist across diverse spatiotemporal scales [23] and can be argued to form a separate intra-
human layer in the multiscale social network hierarchy. These recent advances in network
neuroscience complement substantial advances in social and cognitive neuroscience that have
mapped patterns of activity and the structure of the human brain within and across brain
regions.

Here, we review recent studies that have brought together questions of brain structure and
function with insights from social network analysis. It is beyond the scope of this article to
provide a substantial review of the foundational literatures in social and developmental psy-
chology and sociology [378_TD$DIFF]on how individuals function within dyads, groups, and societies, and [379_TD$DIFF]in
neuroscience on how brain structure and function relate to the psychology of the individual.
Instead, we argue that understanding brains and social networks in the context of one another
is not only important, but also critically necessary, because the two are interacting systems:
brain dynamics shape learning and behavior [24], including social interaction [25]; likewise,
social contexts alter brain structure and function [26,27]. Integration of theories and methods
linking brain activity and structure to activity and structure within social networks holds great
promise to improve our knowledge of the single human by improving our ability to predict
behavior, derive core psychological and neurocognitive principles, and distinguish brain health
and disease [28]. In addition, integration of social network and brain dynamics holds great
promise to improve our knowledge of the collective by improving our ability to predict group
behavior [29,30], gain deeper insight into underlying mechanisms, and potentially intervene
more efficiently. For example, questions of communication between individuals and across
groups, as well as broader classes of learning and decision making, can be conceptualized
both in terms of the neural and psychological mechanisms supporting the decisions and
behaviors of each actor (e.g., a decision to share a piece of information or an unconscious facial
response to learning a piece of information), as well as how individuals mutually influence one
another. In these ways, linking brain and social networks opens new avenues for discovering
principles that fundamentally underlie individual decision making, person-to-person interac-
tions, and the broader organization of society (Figure 1).

Although several pieces of this puzzle remain to be discovered, we focus on one example, the
neurobiology of how ideas and behaviors spread within social networks, to illustrate ways in
which brain network dynamics and social network dynamics might be studied in parallel.
Specifically, ideas and behaviors are transmitted and adopted over a period of time, either
through verbal or nonverbal communication. This process involves biological coupling (e.g., of
language patterns [31–33] or nonverbal signals [34–36], and brain activity between commu-
nicators and receivers [37–39]). Given that the behavioral and cognitive processes supporting
idea and behavior spread can change over time, tools to reveal their neurophysiological
underpinnings must be tuned to characterize and quantify temporally expansive phenomena.
Complementing time-varying univariate approaches, including parametric modulation analysis
[40], here we focus on dynamic network approaches as a natural set of tools that meet these
requirements, and that can specifically be used to understand interactions between brain
systems implicated in idea and behavior spread, including the value system and the default
mode network[380_TD$DIFF][41]. By characterizing patterns of functional connectivity and their changes over
fine-scale temporal windows, these approaches can be used to map communication patterns
between functionally specialized brain areas that either directly relate to interpersonal com-
munication patterns occurring during the experiment, or that predict features of interpersonal
communication occurring outside of the experiment over longer time windows. More generally,
markers of brain connectivity (short timescale) can be linked in a correlative or causativemanner
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to communication patterns between people in social networks (longer timescale), thereby
offering an explicit mathematical framework for integration across this multiscale network.

To unpack how [381_TD$DIFF]a multiscale network perspective [382_TD$DIFF]can inform both neural and social scientific
questions related to the spread of ideas and behaviors, we begin with a discussion of selected
brain networks that are broadly relevant[383_TD$DIFF], and we review how a network perspective has aided
our understanding of these processes. We then move to a discussion of recent studies that
have examined brain dynamics in dyads and groups, which comprise intermediate building
blocks of social networks, and we consider the ways in which broader social network structure
might influence these processes. In doing so, we review work that has conceptualized social
network structure as a type of individual difference that might affect, and be affected by, a
broader array of psychological functions and individual behaviors [42,43]. The studies we
review and the concepts we grapple with are illustrative of the broader potential for integrating
brain network and social network perspectives, and motivate a set of open questions at the
intersection of these domains. Tackling these questions calls for new methodological
approaches and conceptual theories addressing the multiscale nature of social networks,
with the smallest scales comprising individual humans whose brains are teaming with inter-
connected units performing diverse computations and communicating complex information,
and scaling up to explain collective phenomena.

Figure 1. Building Hypotheses Brid-
ging Brain Networks and Social Net-
works. How can we move from typical
data collected in a neuroimaging experi-
ment to a multiscale network? Neural
regions of interest [e.g., blue and green
dots in (A)] can be treated as nodes in a
network, connected to one another by
estimates of white matter structure or
by estimates of functional connectivity,
such as a Pearson correlation between
pairs of regional mean BOLD time series
[e.g., in (A) the blue and green lines repre-
sent the time series from each region of
interest over the course of a task in an
MRI scanner; see also Box 1 in the main
text]. By encoding these relationships in a
connectivity matrix [depicted in shades of
red in (A)], one can first determine the
strength of connectivity between brain
regions in a single individual during differ-
ent task conditions [in (A), the weight of
the edges connecting the regions of inter-
est in the right-most brain image repre-
sents the strength of the correlation
between the time series of those nodes].
[327_TD$DIFF]Such a matrix can be used to address
hypotheses about not only individuals
acting in isolation, but also the interplay
between brain networks supporting
mutual influence between individuals in
social networks (e.g., processes facilitat-
ing the spread of ideas or behaviors), as
depicted by lines connecting brain
regions across different people’s brains
in (B). In addition, it is possible to model
how an individual’s social network
resources or placement within their social
network relate to their brain or behavior,
as depicted in (C). Adapted from [25].
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How Do Information and Behaviors Spread from Person to Person in
Networks?
As a central example to illustrate the idea that brain and social networks mutually influence one
another, and that understanding such interactions has value, we consider the fact that ideas
[44,45], emotions [46–49], and behaviors [46–48,50,51] can spread from person to person in
both online and offline social networks [52]. What are biological mechanisms for these
phenomena? Social scientists have asserted that belonging and coordination are critical for
human survival [53,54]; being part of a group confers many advantages, including the potential
to guard or defend from predators and the elements, and to learn optimal behaviors from
others, thereby ensuring the maintenance and availability of resources and safety. In parallel,
neuroscientists have characterized a range of brain systems relevant to communication and
decision making. However, the question of how ideas and behaviors spread between brains
through social networks has only begun to be addressed [55]. Here, we review studies in
individuals, as well as research branching into dyads and networks, that speak to the cognitive
mechanisms of, neurophysiological manifestations accompanying, and network influences on
idea and behavior spread. Collectively, this growing body of literature provides an example for
thinking about a broader framework for traversing levels of analysis from brains to social
networks. Bringing these ideas together, we then argue that there are important open ques-
tions about how ideas and behaviors spread that could be solved bymodeling brains and social
networks within a multiscale network framework (Figure 2).

Brain Networks within Individuals[384_TD$DIFF]’
Cognitive Processes Supporting the Spread of Ideas and Behaviors
Although many cognitive processes may support the spread of ideas and behaviors from
person to person, reward-driven learning in ventral striatum (VS) and ventromedial prefrontal
cortex (vMPFC) is central to the successful spread of ideas and behaviors, such that people are
more likely to share ideas when they believe the outcome of sharing will be positive [55]. In this
context, communicators’ intentions to share information [56,57], and their success in doing so
[57–59], are associated with activity within the communicator’s value system, which can weigh
the potential value of sharing one piece of information over another, or over not sharing it at all.
In this case, sharers may find value in sharing content that they themselves find valuable, but
self-disclosure and social bonding may also be inherently valuable ends that can motivate
sharing ([56,60–62]; for reviews and information on inputs to the value calculation, see [44,55]).
In parallel, neural activation in the analogous brain systems of receivers who are exposed to
information about others’ beliefs, preferences, and actions also contributes to the likelihood
that the receivers update [385_TD$DIFF]their own beliefs, preferences, and actions to align with those of the
communicators [55,63–67].

Brain Network Dynamics Supporting the Spread of Ideas and Behaviors
[386_TD$DIFF]Brain areas implicated in the communication or reception of ideas and behaviors do not operate
in isolation. Instead, recent advances in network neuroscience [12] suggest that these brain
areas form hotspots within a wider, more dynamic web. In this view, individual brain regions
interact with each other (e.g., via synchronization, correlation, or other measures of functional
connectivity) on the backbone of crisscrossing white matter tracts comprising large bundles of
myelinated neuronal axons [68]. Recent advances in neuroscience and computational science
have provided unprecedented opportunities to consider the dynamics within and between
brain networks as they evolve over time in accordance with people’s changing mental states
and behaviors [69,70]. Importantly, reconfiguration of regions working together provides a view
of brain activity that is complementary to the more modular view that a given region tends to
achieve a specific function in a relatively fixed manner. Thus, the dynamic network perspective
can augment the prediction of different behavioral outcomes in humans [24] and provide tools
that are particularly appropriate for the study of idea and behavior spread.
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Differences in the architectures and functional dynamics of key brain regions and networks
across people can alter the tendency for a person to either spread or receive ideas or behaviors
via a host of mechanisms. In other words, some people might tend to exhibit brain dynamics
that promote a greater tendency to share ideas, or a greater receptivity to assimilating ideas.
For example, preliminary evidence demonstrates that individual differences in connectivity
within the value system (i.e., between VMPFC and VS) of sedentary adults [71] and smokers
[72] predict their receptivity to persuasive appeals aimed at changing those behaviors, and
explain variance in real-world health outcomes in physical activity and smoking cessation above
and beyond univariate activity in either region alone. More broadly, different brain network
dynamics have also been associated with variation in factors that might indirectly alter the
tendency for a person to either spread or receive ideas or behaviors, such as social anxiety [73],
emotional state [74], and perceived social support [75].

[328_TD$DIFF]Figure 2. Multiscale Network Nature of Idea and Behavior Spread. Ideas and behaviors spread frommass media
and from person to person through brain networks within social networks. Here, we illustrate the complex and hetero-
geneous organization of social networks where people (nodes) are connected by relationships of various strengths
(edges), which can be defined in different ways depending on the study being conducted and the hypothesis being tested.
A propagation chain between three individuals within this social network begins with the person who is the source of the
information, who is connected to the primary receiver, who may in turn decide to share to a secondary receiver. Adapted
from [329_TD$DIFF][44].
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Recent efforts also demonstrate that the manner in which brain networks reconfigure over time
can predict [387_TD$DIFF]a person’s future decisions [76], and can track the processing of linguistic stimuli
from words to sentences to stories [77–79] [388_TD$DIFF]. These findings highlight the role of brain network
dynamics in the processing and uptake of information that is naturally provided in social
contexts. Importantly, these patterns of brain network reconfiguration differ across different
people and, thus, can be used to predict individual differences in learning [80,81], working
memory [82], and cognitive flexibility [82,83], all cognitive processes that are fundamental to
idea and behavior spread. Finally, the intrinsic dynamics of these brain networks encoding
patterns of time-varying functional connectivity can change within a single person over short
timescales as a function of mood, fatigue, arousal, and attention [74,84], highlighting the value
of using tools capable of capturing network configuration over time and at different temporal
scales (e.g., within and between experimental sessions).

As a whole, network neuroscience thus offers a perspective on human cognition [70,85] and
provides insights into specific processes supporting the spread of ideas and behaviors. More
broadly, the emerging consideration of network organization in the brain has the potential to
improve our understanding of other cognitive processes that cannot be explained by the
workings of individual regions [86]. The approach capitalizes on tools from network science,
graph theory, and systems engineering [87], which together have offered fundamental insights
into the architecture of multiple brain systems relevant to the spread of ideas and behaviors,
such as the default mode system [88], the valuation system [89], and the mentalizing system
[14].

From Individuals to Dyads and Multiscale Networks
Work on the brain network dynamics characteristic of single individuals has recently taken a
more ‘social turn’, and begun to uncover the neural basis of how pairs of individuals or groups of
individuals interact [90]. For example, although measures of functional connectivity have
traditionally focused on intrabrain connectivity within brain regions in single subjects, they
can just as straightforwardly be computed between two brain regions in different subjects.
These sorts of calculations are referred to as intersubject functional connectivity [77]. The
resulting brain-to-brain networks provide an analog to social networks and other social
scientific approaches to studying dyads and groups, but fractionate the ‘atomic’ definition
of the person into brain regions [389_TD$DIFF](Box 1). These within-brain networks can then be integrated in a
comprehensive framework of dyads, groups, or even larger communities or cultures. Taking
this step is more than a mere thought exercise, but instead can offer new insight into the
underpinnings of thoughts and emotions and how they spread in our inherently social world [390_TD$DIFF].

In the case of ideas spreading through social networks, the strength of coupling between brain
activity in communicators and receivers [38,39,91], as well as between receivers exposed to
shared content [92], is associated with the success of the communication process (i.e., the
successful transmission of signals into the brain networks of the receiver [37,93]). For example,
greater synchrony in several parts of the value system and default mode network more broadly
(medial prefrontal cortex, MPFC; striatum; posterior cingulate; and temporal parietal junction,
TPJ) has been associated with more successful communication between a communicator
telling a story and a listener who was later asked to recall details of that story [38]. Furthermore,
activity within a subset of the synchronized brain regions (MPFC; striatum; and dorsolateral
prefrontal cortex, dLPFC) in listeners precedes the corresponding activity in the speaker’s
brain, a process termed ‘anticipatory coupling’, emphasizing the bidirectional nature of com-
munication. Moving from communicating pairs to even larger networks, analyses of intersubject
brain connectivity across networks of individuals demonstrate [391_TD$DIFF]that brain-to-brain networks
become increasingly efficiently organized as the level of interaction between subjects increases
[94]. Complementary work demonstrates that people who are closer to one another in their
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social networks show more similar brain responses to stimuli such as movie clips, even
controlling for demographic similarity [95]. These data suggest that social network variables
influence how people process information, or that people who process information more
similarly more easily communicate and become friends.

Biological synchrony is thought to allow communicating pairs of individuals to co-regulate their
actions according to shared goals [96]. The growing body of research directly examining the
brains of people communicating [90] lays the foundation on which to consider how ideas and
behaviors flow in social networks by pointing towards dyads and chains of person-to-person
communication as the key building blocks of social networks. Yet, both brain and social
systems are known to operate as interconnected networks with emergent collective behaviors
[97,98]. Thus, work examining neural processes in dyads, chains, and more complex config-
urations, such as triangles, might help illuminate how and why ideas spread in small groups and
larger populations [99]. What are the network factors, in both brains and social systems, that
influence how ideas are propagated and how behaviors are transmitted across groups?
Likewise, similar questions can be asked regarding how social network structure might
influence a wider array of social, cognitive, and emotional processes in individuals and groups.

Drawing on methods from social sciences that study dyads and groups, neuroscientists have
begun to consider how brain activity across individuals synchronizes and what effects this
might have on interpersonal communication and decision making more broadly. Although
preliminary evidence illustrates that brain activity in one actor can be correlated with activity in
other actors, many questions remain, including those about the brain networks involved, their
inter-relationships across actors, and the influence of broader social network structures on

[332_TD$DIFF]Box 1. Measurement of Integrated Social and Brain Networks
[333_TD$DIFF]Scaling up beyond individuals to pairs or groups of subjects requires either simultaneous measurement in the form of
hyperscanning [334_TD$DIFF][138], or post-hoc analyses that take data from individuals who engaged in the same experience and link
those data together after acquisition [335_TD$DIFF][139]. One way in which the latter can be accomplished is by exposing participants
to the same time-locked stimuli and then examining the degree to which different participants show intersubject
correlation in response to those stimuli [336_TD$DIFF][37,92,140]. An extension of this approach involves collecting brain activity in
communicators as they communicate and receivers as they receive; this method similarly allows time-locked analysis of
a common time series [337_TD$DIFF][37,91,92,140]. Scaling this approach from dyads to networks, one study constructed multibrain
networks of two speakers and ten listeners, connected in a single network, to measure synchronous communication
between network members [338_TD$DIFF][141]. These approaches pave the way to understand the manners in which brain network
dynamics in one person might influence or reflect the brain network dynamics in another.

In addition, both brains and social systems have both structural and functional network organization, and both aspects
of the systems may be important in understanding system–system interactions. In the human brain, while functional
networks are defined based on similar time-varying patterns of regional activity, structural networks are defined based
on estimates of white matter tracts connecting region pairs [339_TD$DIFF][142,143]. Structural network organization in the brain varies
appreciably across individuals [340_TD$DIFF][144], over developmental timescales [341_TD$DIFF][145], and over healthy aging [342_TD$DIFF][146]. This organiza-
tion has been linked to individual differences in cognitive function [343_TD$DIFF][147], and to differences in the patterns of functional
connectivity that support it [344_TD$DIFF][148–150].

Just as brain networks can be described in terms of structure and function, social networks can likewise be described in
terms of the structure of social ties that surround an individual (i.e., who knows or is connected to whom
[345_TD$DIFF][1,42,131,133,151]) and infrastructure that connects them [346_TD$DIFF][152] as well as functional interactions in which people
engage (e.g., communication networks [347_TD$DIFF][153–155]) and the quality of the relationships between people (e.g., liking
[121]). As with brain networks, the structure of social networks varies appreciably across individuals [348_TD$DIFF][42,133], and within
individuals over development [349_TD$DIFF][156] and as their context changes [350_TD$DIFF][157], although there is some consistency in an
individual’s ‘signature’ network characteristics [154].

Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy 7



TICS 1705 No. of Pages 17

brain activity within individuals and pairs. Understanding when, why, and how ideas and
behaviors spread can benefit from linking these levels of analysis.

Multiscale Networks Spanning Brain and Social Networks
To address questions of mechanism across levels of analysis, it is important to note that,
because network architectures are present and influential across levels of the social hierarchy
(from individuals, to pairs, to groups), techniques from network science offer ways in which to
link mechanisms of cross-scale phenomena [23]. Beyond the fact that network analysis is
applicable to both brain and social networks independently, we envision that multiscale
network analysis could provide some unique insights. Specifically, mathematical modeling
of such a multiscale network could offer a new and parsimonious way of integrating findings
from individual brains with findings relevant to social groups (e.g., about how ideas and
behaviors spread). This notion builds on: (i) recent advances in the mathematics of multilayer
networks [100], including tools for representation [101], characterization [102], and inference
regarding function [103]; and (ii) the application of these tools to real-world multilayer systems
with structures that are analogous to those observed in brain–human–group networks
[104–106]. These studies offer concrete intuitions for how information can be created, manip-
ulated, and processed in regions and networks in one brain and, based on those computations,
the information could be transmitted from that brain to another brain in the social network, via
processes of active transmission, learning, diffusion, or contagion to name a few (Boxes 2 and
3; Figure 3).

Given that people and, hence, their brains do not function in isolation, it also makes sense to
consider how the structure of interconnections between people who influence one another
might change the way a given individual operates. Thus, in the next section, we turn our
attention to the ways in which the structural properties of a social network might moderate the
brains of individual actors and [392_TD$DIFF]vice versa.

Box 2. Multilayer Brain-Social Networks
[351_TD$DIFF]Intuitively, the brain-social multiscale network has two layers: the brain network layer, in which regions are nodes, and
structural or functional connections are edges; and the social network layer, in which people are nodes, and
interpersonal relationships are edges. An important question is how these distinct layers become connected with
one another to form amultilayer structure. Arguably the simplest way in which to link the two layers [352_TD$DIFF]is to note that all brain
areas of person 1 are linked by interlayer links to the node in the social network that represents person 1. Similarly, all
brain areas of person 2 are linked by interlayer links to the node in the social network that represents person 2. In this
multilayer network, information in one region in person 1 can be transmitted to another region in person 1 via the brain
network; that transmission of information can lead to a change in the idea of person 1, which can then be transmitted
from person 1 to person 2 via the social network.

To summarize, this architecture comprises region-to-region links in the brain network layer only, person-to-person links
in the social network layer only, and region-to-person links that bridge across layers in the multilayer network. While a
useful starting point, recent data suggest that this multilayer network also contains a fourth kind of link: a region-to-
region link across persons where a brain area in one person can be linked by temporal synchronization of activity to the
brain area of another person. Such brain-to-brain connectivity could reflect shared neural representations that arise
from assumptions based on cultural knowledge or other variables, which may be, but are not required to be, directly
reflected in behavior.

The key advantage of the multilayer framework is that it enables one to formally develop and integrate: (i) models of
information transmission across links in the brain network; (ii) models of idea transmission across links in the social
network; (iii) models of brain-to-brain synchrony; and (iv) models of computation, cognition, emotion, and perception
that translate information into ideas across region-to-person links. Such models can then be used to probe and predict
how perturbations at one node in one network layer (e.g., brain) can impact another node in another network layer (e.g.,
social).

8 Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy
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In What Ways Do Different Social Network Structures and Dynamics Shape
Brain and Behavior? In What Ways Do Different Brains Shape the Network
Positions We Occupy?
The idea that the social fabric that surrounds humans contributes to psychological and
biological functioning is not new. For example, decades of research have demonstrated links
between social support and biological function in animals and humans [107–110] and cultural
psychologists have argued that individuals both influence and are influenced by their social
environments [111]. Extending this logic, the brain influences the social networks people are in
and how individuals interact within them, but the social dynamics and social network structure
also influence how people’s brains work. By formalizing these relationships, mathematical
models of social network structure and resources with models of brain function may provide
new insight into both domains (Box 4). In line with this goal, a growing body of literature has
begun to explore the ways in which social network properties (including specific structural
features) relate to brain structure and function. Several of these findings suggest that the
structure and function of the mentalizing system of the brain, as well as regions involved in

Box 3. A Multilayer Network Model of [353_TD$DIFF]How Ideas and Behaviors Spread
[354_TD$DIFF]Ideas and behaviors spread from brain to brain through social networks. We offer one example of the type of multiscale
network model we envision linking neuro- and social scientific models to explain when, why, and how ideas and
behaviors spread. From the neuroscience side, decisions, includingwhether to share information as a communicator, or
act on that information as a receiver, can be modeled in terms of reinforcement learning [355_TD$DIFF][158,159]. The reinforcement
learning perspective argues that personal subjective value maximization guides behavior [356_TD$DIFF][160–163]. Under this
framework, when making choices, the brain is thought to compute a predicted reward for each potential course of
action. Choices that result in more reward than expected are reinforced, and choices that result in less reward (or more
punishment) than expected are devalued [357_TD$DIFF][164]. In parallel, social psychologists have highlighted that learning can take
place not only with respect to an actor’s own experience, but also through observational and social learning from the
experiences of others [358_TD$DIFF][93,165,166]. This learning occurs in conjunction with brain systems supporting simulation [359_TD$DIFF][166]
and understanding of other’s experiences and perspectives (i.e., mentalizing) [360_TD$DIFF][93,167,168]. Likewise, the spread of
ideas and other group-based problems are also critically influenced by the structure and composition of the social
network (e.g., [361_TD$DIFF][2,8,169,170]).

Bringing these ideas together with a multiscale network perspective, the flow of ideas and behaviors through social
networks could be mathematically modeled by integrating concepts from reinforcement learning and social learning
with network science. Here, an actor’s choices could be modeled using terms that capture information about the
structure and function of brain networks within and between individuals. For example, at the individual level, such a
model would characterize activity within and interactions between brain systems within the individual that support
valuation, simulation, and mentalizing as the actor learns from their own choices and the choices they observe in others
[362_TD$DIFF][171]. Consistent with foundational research in social and developmental psychology and sociology on how individuals
function within dyads, groups, and societies, such a model would also explicitly model the actions of social referents
surrounding the actor. Finally, to capture the multiscale nature of networks of brains communicating with one another,
the model could account for the strength of coupling between key brain systems of actors within the network, as well as
the structure of the individuals in the network (e.g., Figure 3 in the main text).

[363_TD$DIFF]As a simple initial example, the probability that an idea spreads from a sharer (s) to [364_TD$DIFF]a receiver (r), could be modeled in
terms of [365_TD$DIFF]summary statistics of activation (A) vectors and connectivity (C) matrices capturing: (i) activity within the
potential sharer’s brain (e.g., with nodes in the value and mentalizing systems) when describing the idea; (ii) activity and
connectivity within parallel regions within the receiver’s brain during exposure to the ideas; and (iii) coupling between the
two. Furthermore, one could include a matrix capturing the number and position of other social referents (relative to the
sender and receiver) who hold the same view within the social network (N). An example model could be written as
follows (Equation [I]):

PðspreadsrÞ ¼ As þ Cs þ Ar þ Cr þ Asr þ Csr þ Ns þ Nr þ error ½I&

[366_TD$DIFF]Open questions include which summary statistics of each of these types of data to chose, and whether factors remain
simply additive or may be better modeled as multiplicative. Although each of these pieces has beenmodeled in isolation
in prior work, such an integrated social reinforcement learningmodel mathematically linksmodels of brain dynamics with
social network structure and dynamics, and allows a more integrated theory of how ideas and behaviors spread in a
social world [24].
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affective processing, display particularly strong covariation with social network features [393_TD$DIFF](see
examples in Figure 4).

Mentalizing, operationalized as accurately reporting on someone else’s mental state [112], and
empathizing with others [113] are both processes that covary with social network size. In
monkeys, experimentally manipulating social group size increases the structure and function of
brain regions associated with the processing of social cues [114]. In humans, social network
size also covaries with gray matter volume within regions associated with mentalizing [115], as
well as broader emotion processing systems comprising the amygdala, orbitofrontal cortex,
and connectivity between amygdala and cortical regions [116–118]. Also in humans, social
network diversity, but not size, is associated with global white matter integrity at the borders of
dmPFC, a key component of the mentalizing system [119], and in the corpus callosum [394_TD$DIFF].

Differing social network properties are also associated with functional differences in processing
within systems necessary for navigating the social world. For example, during resting-state
scans, those with larger social networks show greater connectivity between the amygdala and

Figure 3. Mathematical Models of the Multiscale Mechanisms of Idea and Behavior Spread. Building an
integrated theory of how ideas and behaviors spread from person to person could benefit frommodels that explicitly bridge
network models of brain structure and function, mathematical models of human behavior, and quantitative statistics
summarizing social network structure and function, as well as interactions between each of these levels of analysis. In this
conceptual schematic, we illustrate the idea that time-varying changes in regional activation, brain network architecture,
behavioral measures, and social network resources can be linked mathematically in a formal modeling framework. As
detailed in Box 3 in the main text, it is possible to bridge reinforcement learning with network science, such that an actor’s
choices are modeled not only in terms of their own behavior and neurophysiology, but also with terms that account for the
actions of social referents surrounding the actor, as well as the brain and social network structures of the individuals in the
network. Adapted [330_TD$DIFF]from [24].
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parts of the value system implicated in social affiliative behavior, as well as brain regions
implicated in social perception [118]. It is likely that social network structures both shape the
types of social interaction that people have and are also shaped by individual differences in the
tendency to use the brain in particular ways. [395_TD$DIFF]Teenagers who occupy social network positions
with greater potential for information brokerage (i.e., connect more friends who did not
otherwise know one another) also use brain regions implicated in mentalizing more when
making recommendations to others [120]. It is possible that thosewho havemore opportunities
to translate information between others would need to practice mentalizing more, or that
people who tend to do so more would naturally gravitate to network positions that make use of
that tendency.

Mentalizing tendencies may also be associated with other advantages that are reflected in [396_TD$DIFF]the
brain function of perceivers and social targets. First, more-popular people are perceived by
others differently than less-popular people are; when network members viewed the faces of
more-popular people in their social networks, popular faces elicited increased activity in
functionally localized brain regions associated with mentalizing and valuation, with the effects
of mentalizing mediated by value-related activity [121]. Interestingly, these effects were stron-
gest in the most popular individuals, who were also the most accurate in knowing how others
viewed them [121]. These data are consistent with the idea that brain and social network

Box 4. Multiscale Network Models: Description, Prediction, and Perturbation
[367_TD$DIFF]In principle, themultilayer network framework can be used tomodel how the change in time-varying activation of a single
region (node) in the brain network layer can alter the state (e.g., mental or behavioral) of a person (node) in the social
network layer. Key types of open questions in the field can be divided into questions of description, prediction, and
perturbation.

First efforts to describe the architecture of the multilayer brain-social network could focus on quantifying the relative
strengths of the different sorts of links present. Generally, one set of studies has focused on quantifying the strength and
topology of inter-regional links present in brain networks during tasks related to idea transmission and receptivity; a
second set of studies has focused on quantifying the strength and topology of brain-to-brain synchrony during
perception; and a third set of studies has focused on quantifying the strength and topology of interpersonal links
present in social networks that support idea spread and idea contagion. However, at present, no single study has
attempted to quantify the strength of region-to-region links within brain networks, brain-to-brain links across individuals,
person-to-person links within social networks, [368_TD$DIFF]and region-to-person links bridging brain networks to social networks
during a single task andwith the same individuals. The challenge in doing so will be to address the fact that each of these
links may need to be estimated on different time scales, with region-to-region links being estimable by fMRI [369_TD$DIFF]and other
neuroimagingmethods over short time windows, and person-to-person transmission of ideas potentially occurring over
longer time windows in social networks.

After quantifying the strength of different sorts of links, one might wish to predict how far an idea might be expected to
spread through a given sort of social network when the pattern of activity and connectivity in a single brain changes.
Answering this question will require the construction of causal models for information transmission across links in a brain
network, idea transmission across links in a social network as potentially modulated by the likelihood of brain-to-brain
synchrony, and the translation of information within a brain region to an idea that is transmittable across persons via
intra-personal processes related to computation, cognition, emotion, and perception. The construction and integration
of such causal models will provide specific predictions about how perturbations at one node in one network layer can
impact on another node in another network layer.

The development of such predictions then motivates perturbative empirical studies that can validate or disprove the
predictions. One particularly interesting way in which to test causal predictions in brain-social multilayer networks is to
expand behavioral network science experiments [370_TD$DIFF][170,172,173] by integrating neuroimaging and neurocognitive
phenotyping. Specifically, one could recruit a large group of individuals (e.g., 30 < N < 50), place each individual
on a network of communication according to their neural markers of receptivity or influence, and quantify idea or
behavior transmission in the group. Such an experimental setup would allow one to test causal predictions such as that
a person whose brain network has been statistically linked to high capacity for social influence would have a bigger
impact on population-level behaviors if placed in a point of high betweenness in the communication network than if
placed in a point of low betweenness and low degree.
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variables may mutually influence each other, with activity in value and mentalizing systems
helping perceivers identify important social referents.

Thementalizing system in lateral temporal cortex and TPJ [397_TD$DIFF]mayalso encode information about the
social network position of people more broadly; in one study, these regions automatically
distinguished the social network position of people within a social network whose faces partic-
ipants observed in an fMRI scanner [122]. Separate regions that have been associated with
processing social status, including mPFC, temporal poles, and fusiform gyrus, also encoded
informationabouteigenvectorcentrality,ameasureofprestige thatcaptures thedegreetowhicha
participant is connected to well-connected others [122]. The authors note that these features of
the social network were encoded automatically upon perception of the social referents (the task
involved viewing of brief videos of network members and indicating whether the video was the
sameas the previous videoplayed, anddid not call any specific attention to social judgment). This
[398_TD$DIFF]study highlights one value of integrating brain data with social network data, since the social
perception processes in question occur quickly and often outside of conscious awareness. Thus,
determining the mechanisms would likely be difficult with self-reports alone.

Moving forward, a more comprehensive and systematic investigation of how different social
network properties (e.g., size or closure) relate to brain structure and function across a range of
tasks, groups, and stages of development will help fill in this picture. Recent findings have
begun to address different types of social tie (e.g., friends versus kin or varying levels of
closeness in a social network) may be processed differently in the brain [123], highlighting the
need for more nuanced hypotheses and analyses that account for multiscale structure in both
social networks and brain networks. In addition, although the growing body of studies reviewed
above suggests promise in integrating social network analysis with measures of brain structure
and function, almost none of this work has explicitly modeled networks both within the brain
and between individuals (c.f. [399_TD$DIFF][25]), which we argue is an important intersection to consider.

Concluding Remarks: Current Frontiers and Open Questions
Frontiers for Network Neuroscience
Adopting a multiscale perspective suggests several possible extensions to extant network
neuroscience findings. For example, it remains an exciting open question to determine the
extent to which the brain network dynamics described in early network neuroscience

Figure 4. Example Findings Linking Brain Dynamics and Social Network Position. (A) Greater changes in connectivity within the mentalizing network during
social exclusion versus inclusion are associated with less-dense friendship networks among adolescent males. (B) Multi-voxel patterns within the mentalizing system
and other key brain regions are systematically associated the social network position of classmates seen in an fMRI experiment. Reproduced from [25] (A) and [122] (B).
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investigations might vary across social contexts (e.g., between people who inhabit different
social network structures), cultures, and stages of development. Likewise, variation in brain
network dynamics might contribute to variation in social network structures, and it would be
interesting to examine these dynamics in different cultural contexts.

Frontiers at the Intersection of Brain and Social Network Science
As noted in our introduction, the term ‘social network’ encompasses multiple forms of
interacting, multiscale networks of friends, family, coworkers, and communities. Work at
the intersection of brain science and social network science has only begun to scratch the
surface of how a wide range of social network types (e.g., core networks versus full networks
[400_TD$DIFF][124–129]; strong versus weak ties [401_TD$DIFF][130–132]; or online versus offline networks [402_TD$DIFF][133,134])
might influence, and be influenced by, brain function across the lifespan. In addition, tools for
describing the social networks that individuals inhabit range from objective logs of specific
egocentric networks (e.g., Facebook [403_TD$DIFF][120,135]) to subjective assessments of the support
available from a range of others (e.g., [404_TD$DIFF][135]) to interactions with supportive others [405_TD$DIFF][136]. Finally,
within a given network, several features, ranging from measures of size to measures of
topological complexity, might be differentially associated with brain structure and function
for different types of task.

Many questions remain at the intersection between brain networks and social networks [406_TD$DIFF](see
Outstanding Questions). Arguably some of the most fundamental questions relate to notions of
causality. To what extent do social network dynamics cause changes in brain dynamics? To
what extent do brain dynamics cause changes in social network dynamics? Most existing
research at the intersection of brain and social network science has been correlative; in addition
to building a deeper and broader picture of how a wide range of cognitive, affective, and social
processes interact, experiments that determine causality will also substantially advance sci-
ence in both domains. Longitudinal studies that span key transitions (e.g., from high school to
college) will also provide insight into the direction of causality because both brain networks and
social networks can change appreciably over this timescale. Indeed, tracking associations
between changes in brain network and social network functioning over time provides a
standard of evidence between cross-sectional and experimental designs [407_TD$DIFF][137].

A second set of questions relates to how other external processesmight change theworkings of
brain and social networks.What environmental factorsmoderate the interactions between social
andbrainnetworkdynamics? Inwhatwaysdocultural variables influencesocial andbrainnetwork
dynamics? In what ways might interactions between brain networks and social networks vary
across development (e.g., in children versus adolescents versus adults)? In each case, we hold
that the time is ripe for hypothesesbridgingbrain andsocial networks, andbuildingonboth recent
preliminary data and recently developed computational tools and methods.

Potential Applications
Efforts aimed at understanding and integrating the study of social and brain network dynamics
will advance understanding of basic psychological principles and aid in deriving fundamental
principles about the organization of society. However, even beyond fundamental knowledge,
work at this intersection has the potential to improve real-world practice in clinical treatments for
mental and physical disorders, predicting behavior change in response to persuasive mes-
sages, and improving educational outcomes including learning and creativity. For example, if
people whose brain and/or social networks show differential response to treatments, logged
information (e.g., from social media) could aid in providing tailored interventions. Similarly,
educational environments could be constructed in which groups of students work with one
another in tailored social networks to maximize individual learning potential. Indeed, improved
knowledge in these domains also has the potential to aid in constructing optimal teams for
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group learning and for task performance in education, corporate, medical, defense, or other
contexts. These possibilities motivate collaborative alliances between social scientists, neuro-
scientists, and network scientists in building and fine-tuning laboratory experiments, real-world
studies, computational infrastructure, and fundamental mathematical theory that bridges the
divide between individual brains and social groups by depicting the two as fundamentally
interconnected levels in a multiscale network.
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Outstanding Questions
To what extent do social network
dynamics cause changes in brain
dynamics?

To what extent to do brain dynamics
cause changes in social network
dynamics?

What factors moderate the interac-
tions between social and brain net-
work dynamics?

In what ways do other cultural and
environmental variables influence
social and brain dynamics and the rela-
tionship between them?

In what ways does development
across the lifespan influence social
and brain network dynamics and the
relationship between them?

To what extent can understanding and
integrating the study of social and brain
network dynamics support practical
advances, such as tailoring clinical
treatments for mental and physical dis-
orders; predicting behavior change in
response to persuasive messages;
and improving educational outcomes,
including learning and creativity.

To what extent can understanding and
integrating the study of social and brain
network dynamics advance under-
standing of basic psychological princi-
ples and aid in deriving fundamental
principles about the organization of
society?

Could improved knowledge in these
domains aid in constructing optimal
teams, for group learning and for task
performance in education, corporate,
medical, defense, or other contexts?
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